Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T23:14:02.137Z Has data issue: false hasContentIssue false

Metric properties of non-renormalizable S-unimodal maps: II. Quasisymmetric conjugacy classes

Published online by Cambridge University Press:  14 October 2010

M. Jakobson
Affiliation:
Mathematics Department, University of Maryland, College Park, MD 20742, USA†
G. Świạtek
Affiliation:
Mathematics Department, Penn State University, Mc Allister 209, University Park, PA 16802, USA‡

Abstract

It is shown that for certain classes of S-unimodal maps with aperiodic kneading sequences, the topological conjugacies are also quasisymmetric. This includes some infinitely renormalizable polynomials of unbounded type.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ahlfors, L. V.. Quasiconformal reflections. Ada Math. 109 (1963), 291301.Google Scholar
[2] Benedicks, M. and Carleson, L.. The dynamics of the Hgnon map. Ann. Math. 133 (1991), 73169.CrossRefGoogle Scholar
[3] Beurling, A. and Ahlfors, L.. The boundary correspondence under quasiconformal mappings. Ada Math. 96 (1956), 125142.Google Scholar
[4] Blokh, A. M. and Lyubich, M. Yu. Measure and dimension of solenoidal attractors of one-dimensional dynamical systems. Commun. Math. Phys. 127 (1990), 573583.CrossRefGoogle Scholar
[5] Collet, P. and Eckmann, J. P.. Positive Liapunov exponents and absolute continuity for maps of the interval. Ergod. Th. & Dynam. Sys. 3 (1983), 1346.CrossRefGoogle Scholar
[6] Douady, A. and Hubbard, J. H.. Etude dynamique des polynfimes complexes. Publ. Math. d'Orsay 84–82 (1984).Google Scholar
[7] Melo, W. De and Strien, S. Van. One-dimensional Dynamics. Springer, New York-Berlin-Heidelberg, 1993.CrossRefGoogle Scholar
[8] Douady, A. and Hubbard, J. H.. On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18 (1985), 287343.Google Scholar
[9] Gehring, F.. Charaderistic properties of quasidiscs. Presses de l'Université de Montréal, Montreal, 1982.Google Scholar
[10] Graczyk, J. and Swiatek, G.. Critical circle maps near bifurcation, Stony Brook IMS. Preprint. 1991.Google Scholar
[11] Graczyk, J. and Swiatek, G.. Induced expansion for quadratic polynomials. Preprint. Stony Brook 8 (1993).Google Scholar
[12] Guckenheimer, J.. Sensitive dependence on initial conditions for one dimensional maps. Commun. Math. Phys. 70 (1979), 133160.CrossRefGoogle Scholar
[13] Guckenheimer, J.. Limit sets of S-unimodal maps with zero entropy. Commun. Math. Phys. 110 (1987), 655659.CrossRefGoogle Scholar
[14] Guckenheimer, J. and Johnson, S.. Distortion of Sunimodal maps. Ann. Math. 132 (1990), 71130.CrossRefGoogle Scholar
[15] Hubbard, J. H.. According to Yoccoz, J. C.: Puzzles and quadratic tableaux, manuscript.Google Scholar
[16] Jakobson, M.. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81 (1981), 3988.CrossRefGoogle Scholar
[17] Jakobson, M.. Quasisymmetric conjugacies for some one-dimensional maps inducing expansion. Contemp. Math. 135 (1992), 203211.CrossRefGoogle Scholar
[18] Jakobson, M. and Swiatek, G.. Metric properties of non-renormalizable S-unimodal maps. Ergod. Tli. & Dynam. Sys. 14 (1994), 721756.CrossRefGoogle Scholar
[19] Lento, O. and Virtanen, K.. Quasikonfonne Abbildungen. Springer. Berlin-Heidelberg-New York, 1965.Google Scholar
[20] Mane, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Ec. Norm. Sup. 16 (1983), 193217.CrossRefGoogle Scholar
[21] Metropolis, N., Stein, M. L.Stein, P. R.. On finite limit sets for transformations on the unit interval. J. Combin. Theory (A)15 (1973), 2544.CrossRefGoogle Scholar
[22] Milnor, J.Thurston, W.. On iterated maps of the interval I, II. Springer Lecture Notes in Mathematics 1342. Springer, Berlin, 1988.Google Scholar
[23] Nowicki, T.. Symmetric S-unimodal mappings and positive Lyapunov exponent. Ergod. Th. & Dynam. Sys. 5 (1985), 611616.CrossRefGoogle Scholar
[24] Preston, C.. Iterates of Maps on an Interval. Springer Lecture Notes in Mathematics, 999. Springer, Berlin-Heidelberg-New York, 1983.CrossRefGoogle Scholar
[25] Sullivan, D.. Quasiconformal homeomorphisms and dynamics. I. Fatou-Julia problem on wandering domains. Ann. Math. 122 (1985), 401418.CrossRefGoogle Scholar
[26] Sullivan, D.. Bounds, quadratic differentials and renormalization conjectures. American Mathematical Society Centennial Publications. Vol. 2. American Mathematical Society, Providence, RI, 1991.Google Scholar
[27] Thieullen, P., Tresser, C. and Young, L. S.. Exposant de Lyapunov positif dans des families a un paramgtre d'applications unimodales. CR Acad. Sci. Paris Serie 1 315 (1992), 6972.Google Scholar