Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Gentile, G.
and
Mastropietro, V.
1996.
KAM theorem revisited.
Physica D: Nonlinear Phenomena,
Vol. 90,
Issue. 3,
p.
225.
Chierchia, L.
and
Falcolini, C.
1996.
A note on quasi-periodic solutions of some elliptic systems.
ZAMP Zeitschrift f�r angewandte Mathematik und Physik,
Vol. 47,
Issue. 2,
p.
210.
Lochak, Pierre
1998.
Tores invariants à torsion évanescente dans les systèmes hamiltoniens proches de l'intégrable.
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics,
Vol. 327,
Issue. 9,
p.
833.
Giorgilli, Antonio
1998.
Classical constructive methods in KAM theory.
Planetary and Space Science,
Vol. 46,
Issue. 11-12,
p.
1441.
Gallavotti, Giovanni
1999.
Hamiltonian Systems with Three or More Degrees of Freedom.
p.
62.
Gallavotti, Giovanni
2001.
Renormalization group in statistical mechanics and mechanics: gauge symmetries and vanishing beta functions.
Physics Reports,
Vol. 352,
Issue. 4-6,
p.
251.
Costin, O.
Gallavotti, G.
Gentile, G.
and
Giuliani, A.
2006.
Borel Summability and Lindstedt Series.
Communications in Mathematical Physics,
Vol. 269,
Issue. 1,
p.
175.
Belyaev, Aleksandr V.
2012.
On the direct proof of the Poincaré theorem on invariant tori.
Journal of Mathematical Sciences,
Vol. 181,
Issue. 1,
p.
18.
Fortunati, Alessandro
and
Wiggins, Stephen
2014.
Persistence of Diophantine flows for quadratic nearly integrable Hamiltonians under slowly decaying aperiodic time dependence.
Regular and Chaotic Dynamics,
Vol. 19,
Issue. 5,
p.
586.
Gallavotti, Giovanni
2019.
Quasiperiodic Hamiltonian motions, scale invariance, harmonic oscillators.
Journal of Mathematical Physics,
Vol. 60,
Issue. 6,
Sansottera, Marco
and
Danesi, Veronica
2023.
Kolmogorov variation: KAM with knobs <i>(à la Kolmogorov)</i>.
Mathematics in Engineering,
Vol. 5,
Issue. 5,
p.
1.
Corsi, Livia
Gentile, Guido
and
Procesi, Michela
2024.
Maximal Tori in Infinite-Dimensional Hamiltonian Systems: a Renormalisation Group Approach.
Regular and Chaotic Dynamics,
Vol. 29,
Issue. 4,
p.
677.