Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T23:08:24.589Z Has data issue: false hasContentIssue false

Majorant series convergence for twistless KAM tori

Published online by Cambridge University Press:  14 October 2010

Giovanni Gallavotti
Affiliation:
Dipartimento di Fisica, Università di Roma, ‘La Sapienza’, P.le Moro 2, 00185 Roma, Italia (email: gallavotti%40221. [email protected], gentileg%[email protected])
Guido Gentile
Affiliation:
Dipartimento di Fisica, Università di Roma, ‘La Sapienza’, P.le Moro 2, 00185 Roma, Italia (email: gallavotti%40221. [email protected], gentileg%[email protected])

Abstract

A self-contained proof of the KAM theorem in the Thirring model is discussed, completely relaxing the ‘strong diophantine property’ hypothesis used previously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A] Arnold, V.. Proof of a A.N. Kolmogorov theorem on conservation of conditionally periodic motions under small perturbations of the hamiltonian function. Usp. Matematic. Nauk, 18 (1963), 1340.Google Scholar
[B] Brjuno, A.. The analytic form of differential equations, I. Trans. Moscow Math. Soc. 25 (1971), 131288; 26 (1972), 199-239.Google Scholar
[CF] Chierchia, L. and Falcolini, C.. A direct proof of the theorem by Kolmogorov in Hamiltonian systems. Annali della Scuola Normale Superiore di Pisa 21 (1995), 541593.Google Scholar
[E] Eliasson, L. H.. Hamiltonian systems with linear normal form near an invariant torus. Bologna Conference, 30 May to 3 June 1988. Turchetti, G., ed. World Scientific: Singapore, 1989; Generalization of an Estimate of Small Divisors by Zehnder, Siegel. E. and Rabinowitz, P., eds. (Book in honor of J. Moser.) Academic: New York, 1990; Absolutely convergent series expansions for quasi-periodic motions. Report 2-88, Department of Mathematics, University of Stockholm, 1988.Google Scholar
[G] Gallavotti, G.. Twistless KAM tori. Coinmun. Math. Phys. 164 (1994), 145156. See also: G. Gallavotti. Invariant tori: a field theoretic point of view on Eliasson's work. Talk at the meeting in honour of the 60th birthday of G. Dell'Antonio (Capri, May 1993), Marseille, CNRS-CPT. Preprint.CrossRefGoogle Scholar
[G2] Gallavotti, G.. Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable hamiltonian systems. A review. Rev. Math. Phys. 6 (3) (1994), 343411.Google Scholar
[G3] Gallavotti, G.. The Elements of Meclianics. Springer: New York, 1983.Google Scholar
[G4] Gallavotti, G.. Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57 (1985), 471-572. G. Gallavotti. Quasi Integrable Mechanical Systems. K. Osterwalder and R. Stora, eds. Les Houches, XL111 (1984), Vol. II, pp. 539-624. North-Holland: Amsterdam, 1986.Google Scholar
[K] Kolmogorov, N.. On the preservation of conditionally periodic motions. Dokl. Akad. Nauk SSSR 96 (1954), 527530. G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn. A proof of Kolmogorov theorem on invariant tori using canonical transormations defined by the Lie method. Nuovo Cim. 79B (1984), 201-223.Google Scholar
[M] Moser, J.. On invariant curves of an area preserving mapping of the annulus. Nach. Akad. Wiss. Gottingen 11 (1962), 120.Google Scholar
[P] Poschel, J.. Invariant manifolds of complex analytic mappings, Les Houches, XLIII (1984). Vol. II, pp. 949964. K. Osterwalder and R. Stora, eds. North Holland: Amsterdam, 1986.Google Scholar
[PV] Percival, I. and Vivaldi, F.. Critical dynamics and diagrams. Physica D 33 (1988), 304313.Google Scholar
[S] Siegel, K.. Iterations of analytic functions. Ann. Math. 43 (1943), 607612.CrossRefGoogle Scholar
[T] Thirring, W.. Course in Mathematical Physics. Vol. 1, p. 133. Springer: Wien, 1983.Google Scholar