Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:41:39.308Z Has data issue: false hasContentIssue false

Lyapunov spectrum for multimodal maps

Published online by Cambridge University Press:  19 March 2015

KATRIN GELFERT
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária – Ilha do Fundão, Rio de Janeiro 21945-909, Brazil email [email protected]
FELIKS PRZYTYCKI
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland email [email protected], [email protected]
MICHAŁ RAMS
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland email [email protected], [email protected]

Abstract

We study the dimension spectrum of Lyapunov exponents for multimodal maps of the interval and their generalizations. We also present related results for rational maps on the Riemann sphere.

Type
Research Article
Copyright
© Cambridge University Press, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Khal, J., Bruin, H. and Jakobson, M.. New examples of S-unimodal maps with sigma-finite absolutely continuous invariant measure. Discrete Contin. Dyn. Syst. 22(1–2) (2008), 3561.Google Scholar
Alves, J., Bonatti, C. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140 (2000), 351398.CrossRefGoogle Scholar
Avila, A. and Lyubich, M.. Hausdorff dimension and conformal measures of Feigenbaum Julia sets. J. Amer. Math. Soc. 21(2) (2008), 305363.CrossRefGoogle Scholar
Bruin, H., Rivera-Letelier, J., Shen, W. and van Strien, S.. Large derivatives, backward contraction and invariant densities for interval maps. Invent. Math. 172(3) (2008), 509533.CrossRefGoogle Scholar
Bruin, H. and Todd, M.. Wild attractors and thermodynamic formalism, http://www.mat.univie.ac.at/ bruin/papers/PLU.pdf.Google Scholar
Collet, P., Lebowitz, J. and Porzio, A.. The dimension spectrum of some dynamical systems. J. Stat. Phys. 47 (1987), 609644.CrossRefGoogle Scholar
Coronel, D. and Rivera-Letelier, J.. Low-temperature phase transitions in the quadratic family. Adv. Math. 248 (2013), 453494.CrossRefGoogle Scholar
Coronel, D. and Rivera-Letelier, J.. High-order phase transitions in the quadratic family. J. Eur. Math. Soc. to appear. Preprint, 2013, arXiv:1305.4971.Google Scholar
Denker, M., Mauldin, R. D., Nitecki, Z. and Urbański, M.. Conformal measures for rational functions revisited. Fund. Math. 157 (1998), 161173.CrossRefGoogle Scholar
Denker, M., Przytycki, F. and Urbański, M.. On the transfer operator for rational functions on the Riemann sphere. Ergod. Th.& Dynam. Sys. 16 (1996), 255266.CrossRefGoogle Scholar
Denker, M. and Urbański, M.. On the existence of conformal measures. Trans. Amer. Math. Soc. 328(2) (1991), 563587.CrossRefGoogle Scholar
Eckmann, J.-P. and Procaccia, I.. Fluctuations of dynamical scaling indices in non-linear systems. Phys. Rev. A 34 (1986), 659661.CrossRefGoogle Scholar
Gelfert, K.. Expanding repellers for non-uniformly expanding maps with singularities and criticalities. Bull. Braz. Math. Soc. (N.S.) 41 (2010), 237257.CrossRefGoogle Scholar
Gelfert, K., Przytycki, F. and Rams, M.. Lyapunov spectrum for rational maps. Math. Ann. 348 (2010), 9651004.CrossRefGoogle Scholar
Graczyk, J. and Smirnov, S.. Non-uniform hyperbolicity in complex dynamics. Invent. Math. 175 (2009), 335415.CrossRefGoogle Scholar
Hofbauer, F.. Multifractal spectra of Birkhoff averages for a piecewise monotone interval map. Fund. Math. 208 (2010), 95121.CrossRefGoogle Scholar
Inoquio-Renteria, I. and Rivera-Letelier, J.. A characterization of hyperbolic potentials of rational maps. Bull. Braz. Math. Soc. (N.S.) 43 (2012), 99127.CrossRefGoogle Scholar
Iommi, G. and Kiwi, J.. The Lyapunov spectrum is not always concave. J. Stat. Phys. 135 (2009), 535546.CrossRefGoogle Scholar
Iommi, G. and Todd, M.. Natural equilibrium states for multimodal maps. Commun. Math. Phys. 300 (2010), 6594.CrossRefGoogle Scholar
Iommi, G. and Todd, M.. Dimension theory for multimodal maps. Ann. Henri Poincaré 12 (2011), 591620.CrossRefGoogle Scholar
Iommi, G. and Todd, M.. Thermodynamic formalism for interval maps: inducing schemes. Dyn. Syst. 28(3) (2013), 354380 (issue edited by Quas and Vaienti).CrossRefGoogle Scholar
Kameyama, A.. Topological transitivity and strong transitivity. Acta Math. Univ. Comenian. (N.S.) 71(2) (2002), 139145.Google Scholar
Levin, G., Przytycki, F. and Shen, W.. Lower Lyapunov exponent, manuscript.Google Scholar
Mauldin, D. and Urbański, M.. Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
de Melo, W. and van Strien, S.. One Dimensional Dynamics. Springer, Berlin, 1993.CrossRefGoogle Scholar
Misiurewicz, M. and Szlenk, W.. Entropy of piecewise monotone mappings. Studia Math. 67(1) (1980), 4563.CrossRefGoogle Scholar
Nowicki, T. and Przytycki, F.. Topological invariance of the Collet–Eckmann property for S-unimodal maps. Fund. Math. 155 (1998), 3343.CrossRefGoogle Scholar
Olsen, L.. A multifractal formalism. Adv. Math. 116 (1995), 82196.CrossRefGoogle Scholar
Pesin, Y. B.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. The University of Chicago Press, Chicago, IL, 1997.CrossRefGoogle Scholar
Pliss, V.. On a conjecture due to Smale. Differ. Uravn. 8 (1972), 262268.Google Scholar
Przytycki, F.. On the Perron–Frobenius–Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bull. Braz. Math. Soc. (N.S.) 20 (1990), 95125.CrossRefGoogle Scholar
Przytycki, F.. Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. Soc. 119 (1993), 309317.CrossRefGoogle Scholar
Przytycki, F.. Iteration of holomorphic Collet–Eckmann maps: conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials. Trans. Amer. Math. Soc. 350 (1998), 717742.CrossRefGoogle Scholar
Przytycki, F.. Conical limit set and Poincaré exponent for iterations of rational functions. Trans. Amer. Math. Soc. 351 (1999), 20812099.CrossRefGoogle Scholar
Przytycki, F. and Rivera-Letelier, J.. Statistical properties of Topological Collet–Eckmann maps. Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 135178.CrossRefGoogle Scholar
Przytycki, F. and Rivera-Letelier, J.. Geometric pressure for multimodal maps of the interval. Preprint, 2014, arXiv:1405.2443.Google Scholar
Przytycki, F., Rivera-Letelier, J. and Smirnov, S.. Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151 (2003), 2963.CrossRefGoogle Scholar
Przytycki, F., Rivera-Letelier, J. and Smirnov, S.. Equality of pressures for rational functions. Ergod. Th. & Dynam. Sys. 24 (2004), 891914.CrossRefGoogle Scholar
Przytycki, F. and Rohde, S.. Porosity of Collet–Eckmann Julia sets. Fund. Math. 155 (1998), 189199.CrossRefGoogle Scholar
Przytycki, F. and Urbański, M.. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society Lecture Note Series, 371) . Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Rand, D.. The singularity spectrum f (𝛼) for cookie-cutters. Ergod. Th. & Dynam. Sys. 9 (1989), 527541.CrossRefGoogle Scholar
Rivera-Letelier, J.. Asymptotic expansion of smooth interval maps. Preprint, 2012, arXiv:1204.3071v2.Google Scholar
Schmeling, J.. On the completeness of multifractal spectra. Ergod. Th.& Dynam. Sys. 19 (1999), 15951616.CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79) . Springer, New York, 1981.Google Scholar
Weiss, H.. The Lyapunov spectrum for conformal expanding maps and axiom-A surface diffeomorphisms. J. Stat. Phys. 95 (1999), 615632.CrossRefGoogle Scholar