Article contents
Lyapunov exponents in Hilbert geometry
Published online by Cambridge University Press: 03 December 2012
Abstract
We study the Lyapunov exponents of the geodesic flow of a Hilbert geometry. We prove that all of the information is contained in the shape of the boundary at the endpoint of the chosen orbit. We have to introduce a regularity property of convex functions to make this link precise. As a consequence, Lyapunov manifolds tangent to the Lyapunov splitting appear very easily. All of this work can be seen as a consequence of convexity and the flatness of Hilbert geometries.
- Type
- Research Article
- Information
- Copyright
- ©2012 Cambridge University Press
References
[Ale39]Alexandrov, A. D.. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningrad State Univ. Ann. [Uchenye Zapiski] Math. Ser. 6 (1939), 3–35.Google Scholar
[BBV]Berck, G., Bernig, A. and Vernicos, C.. Volume entropy of Hilbert geometries. Pacific J. Math. 245(2) (2010), 201–225.Google Scholar
[Ben60]Benzécri, J.-P.. Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88 (1960), 229–332.Google Scholar
[Ben03]Benoist, Y.. Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. Inst. Hautes Études Sci. 97 (2003), 181–237.Google Scholar
[Ben04]Benoist, Y.. Convexes divisibles 1. Algebraic Groups and Arithmetic (Tata Institute of Fundamental Research Studies in Mathematics, 17). Tata Institute, Mumbai, 2004, pp. 339–374.Google Scholar
[CP04]Colbois, B. and Verovic, P.. Hilbert geometry for strictly convex domains. Geom. Dedicata 105 (2004), 29–42.CrossRefGoogle Scholar
[Cra09]Crampon, M.. Entropies of strictly convex projective manifolds. J. Mod. Dyn. 3(4) (2009), 511–547.Google Scholar
[Cra11]Crampon, M.. Dynamics and entropies of Hilbert metrics. PhD Thesis, Université de Strasbourg, 2011.Google Scholar
[Fou86]Foulon, P.. Géométrie des équations différentielles du second ordre. Ann. Inst. Henri Poincaré 45 (1986), 1–28.Google Scholar
[Fou92]Foulon, P.. Estimation de l’entropie des systèmes lagrangiens sans points conjugués. Ann. Inst. H. Poincaré Phys. Théor. 57(2) (1992), 117–146, with an appendix, ‘About Finsler geometry’ (in English).Google Scholar
[Ose68]Osedelec, V. I.. A multiplicative ergodic theorem. Trans. Moscow Math. Soc. 19 (1968), 197–231.Google Scholar
- 5
- Cited by