Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
McDonald, Steven W.
Grebogi, Celso
Ott, Edward
and
Yorke, James A.
1985.
Fractal basin boundaries.
Physica D: Nonlinear Phenomena,
Vol. 17,
Issue. 2,
p.
125.
Milnor, John
1985.
On the concept of attractor.
Communications in Mathematical Physics,
Vol. 99,
Issue. 2,
p.
177.
Hardin, D. P.
and
Massopust, P. R.
1986.
The capacity for a class of fractal functions.
Communications in Mathematical Physics,
Vol. 105,
Issue. 3,
p.
455.
Mauldin, R. Daniel
and
Williams, S. C.
1986.
On the Hausdorff dimension of some graphs.
Transactions of the American Mathematical Society,
Vol. 298,
Issue. 2,
p.
793.
Yamaguchi, Yoshihiro
and
Tanikawa, Kiyotaka
1986.
Fractal basin boundary constructed by superposition of the Weierstrass function.
Physics Letters A,
Vol. 117,
Issue. 9,
p.
450.
Hata, Masayoshi
1986.
Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations.
Vol. 18,
Issue. ,
p.
259.
Hata, Masayoshi
1988.
Singularities of the Weierstrass type functions.
Journal d'Analyse Mathématique,
Vol. 51,
Issue. 1,
p.
62.
Bedford, T
1989.
The box dimension of self-affine graphs and repellers.
Nonlinearity,
Vol. 2,
Issue. 1,
p.
53.
Saupe, Dietmar
1989.
Visualisierung in Mathematik und Naturwissenschaften.
p.
114.
Beck, Christian
1990.
Brownian motion from deterministic dynamics.
Physica A: Statistical Mechanics and its Applications,
Vol. 169,
Issue. 2,
p.
324.
Hunt, Brian R.
and
Yorke, James A.
1991.
Smooth dynamics on Weierstrass nowhere differentiable curves.
Transactions of the American Mathematical Society,
Vol. 325,
Issue. 1,
p.
141.
Beck, Ch.
1991.
Solitons and Chaos.
p.
183.
Massopust, Peter R.
1991.
Vector—valued fractal interpolation functions and their box dimension.
Aequationes Mathematicae,
Vol. 42,
Issue. 1,
p.
1.
Hata, Masayoshi
1991.
Fractal Geometry and Analysis.
p.
255.
Sirovich, Lawrence
and
Deane, Anil E.
1991.
A computational study of Rayleigh–Bénard convection. Part 2. Dimension considerations.
Journal of Fluid Mechanics,
Vol. 222,
Issue. -1,
p.
251.
Beck, C
1991.
Higher correlation functions of chaotic dynamical systems-a graph theoretical approach.
Nonlinearity,
Vol. 4,
Issue. 4,
p.
1131.
Broomhead, D. S.
Huke, J. P.
and
Muldoon, M. R.
1992.
Linear Filters and Non-Linear Systems.
Journal of the Royal Statistical Society Series B: Statistical Methodology,
Vol. 54,
Issue. 2,
p.
373.
Ding, Mingzhou
Grebogi, Celso
Ott, Edward
Sauer, Tim
and
Yorke, James A.
1993.
Estimating correlation dimension from a chaotic time series: when does plateau onset occur?.
Physica D: Nonlinear Phenomena,
Vol. 69,
Issue. 3-4,
p.
404.
Kube, M.C.
Rossler, O.E.
and
Hudson, J.L.
1993.
A “superfat” chaotic attractor.
Chaos, Solitons & Fractals,
Vol. 3,
Issue. 2,
p.
141.
Siapas, Athanassios G.
1994.
Quantifying the Geometric Sensitivity of Attractor Basins: Power Law Dependence on Parameter Variations and Noise.
Physical Review Letters,
Vol. 73,
Issue. 16,
p.
2184.