Article contents
Limit sets of stable cellular automata
Published online by Cambridge University Press: 09 October 2013
Abstract
We study limit sets of stable cellular automata from a symbolic dynamics point of view, where they are a special case of sofic shifts admitting a steady epimorphism. We prove that there exists a right-closing almost-everywhere steady factor map from one irreducible sofic shift onto another one if and only if there exists such a map from the domain onto the minimal right-resolving cover of the image. We define right-continuing almost-everywhere steady maps, and prove that there exists such a steady map between two sofic shifts if and only if there exists a factor map from the domain onto the minimal right-resolving cover of the image. To translate this into terms of cellular automata, a sofic shift can be the limit set of a stable cellular automaton with a right-closing almost-everywhere dynamics onto its limit set if and only if it is the factor of a full shift and there exists a right-closing almost-everywhere factor map from the sofic shift onto its minimal right-resolving cover. A sofic shift can be the limit set of a stable cellular automaton reaching its limit set with a right-continuing almost-everywhere factor map if and only if it is the factor of a full shift and there exists a factor map from the sofic shift onto its minimal right-resolving cover. Finally, as a consequence of the previous results, we provide a characterization of the almost of finite type shifts (AFT) in terms of a property of steady maps that have them as range.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2013
References
- 2
- Cited by