Published online by Cambridge University Press: 30 October 2020
We continue the study of Rokhlin entropy, an isomorphism invariant for probability-measure-preserving (p.m.p.) actions of countablegroups introduced in Part I [B. Seward. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265–310]. In this paper we prove a non-ergodic finite generator theorem and use it to establish sub-additivity and semicontinuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify the relationship between Rokhlin entropy, sofic entropy, and classical Kolmogorov–Sinai entropy. In particular, using Rokhlin entropy we give a new proof of the fact that ergodic actions with positive sofic entropy have finite stabilizers.