Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:36:29.519Z Has data issue: false hasContentIssue false

Iterates of meromorphic functions III: Preperiodic domains

Published online by Cambridge University Press:  19 September 2008

I. N. Baker
Affiliation:
Department of Mathematics, Imperial College, London, SW7 2BZ, UK
J. Kotus
Affiliation:
Institute of Mathematics, Technical University of Warsaw, 00–661 Warsaw, Poland
Lü Yinian
Affiliation:
Institute of Mathematics, Academia Sinica, Beijing, China

Abstract

The paper discusses the connectivity of periodic and preperiodic domains in the stable set in the iteration of a meromorphic function. The connectivity of an invariant component has one of the values 1, 2, ∞. Examples are constructed to show that the connectivity of a preperiodic component may take any value.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, I. N.. Completely invariant domains of entire functions. In: Mathematical Essays Dedicated to A. J. Macintyre, ed. Shankar, H.. Ohio University Press, Athens, Ohio, 1970, pp. 3335.Google Scholar
[2]Baker, I. N.. Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3) 49 (1984), 563576.Google Scholar
[3]Baker, I. N.. Wandering domains for analytic maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. AI Math. 12 (1987), 191198.Google Scholar
[4]Baker, I. N.. Iteration of Entire Functions: An Introductory Survey, Lectures on Complex Analysis. ed. Chuang, Chi-Tai. World Scientific Publishing Co., Singapore, 1988, pp. 117.Google Scholar
[5]Baker, I. N., Kotus, J. & Yinian, . Iterates of meromorphic functions I. Ergod. Th. & Dynam. Sys. 11 (2) (1991), 241248.Google Scholar
[6]Baker, I. N., Kotus, J. & Yinian, . Iterates of meromorphic functions II. J. London Math. Soc. (2) 4 (1990), 267278.CrossRefGoogle Scholar
[7]Bhattacharyya, P.. Iteration of analytic functions. PhD Thesis, University of London, 1969.Google Scholar
[8]Coddington, E. & Levinson, N.. Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.Google Scholar
[9]Cornfeld, I. P., Fomin, S. V. & Sinai, Ya. G.. Ergodic Theory. Springer, New York, 1982.CrossRefGoogle Scholar
[10]Devaney, R. L. & Keen, L.. Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative. Ann. Scient. Ec. Norm. Sup. (4) 22 (1989), 5579.Google Scholar
[11]Douady, A. & Hubbard, J. H.. Etude dynamique des polynômes complexes I, II. Publ. Math. D'Orsay 84–02 (1984); 85–05 (1985).Google Scholar
[12]Douady, A. & Hubbard, J. H.. On the dynamics of polynomial-like mappings. Ann. Scient. Ec. Norm. Sup. (4) 18 (1985), 287343.Google Scholar
[13]Douady, A.. Disques de Siegel et anneaux de Herman. Astérisque (1987), 152157.Google Scholar
[14]Eremenko, A. E. & Lyubich, M. Yu.. Dynamical properties of some classes of entire functions. Preprint, S.U.N.Y., Stony Brook, 1990.Google Scholar
[15]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271; II, 48 (1920), 33–94, 208–314.Google Scholar
[16]Fatou, P.. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337370.CrossRefGoogle Scholar
[17]Ghys, E.. Transformations holomorphes au voisinage d'une corbe de Jordan. C.R. Acad. Sc. Paris 289 (1984), 383384.Google Scholar
[18]Herman, M. R.. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. I.H.E.S. 49 (1979), 5233.CrossRefGoogle Scholar
[19]Herman, M. R.. Conjugaison quasi-symmétrique des difféomorphismes du circle à des rotations et applications aux disques singuliers de Siegel I. Manuscript.Google Scholar
[20]Keen, L.. Dynamics of Holomorphic Self-maps of C K, Holomorphic Functions and Moduli I. MSRI Publications 10. Springer, New York, 1988.Google Scholar
[21]Kotus, J.. Iterated holomorphic maps of the punctured plane. Lecture Notes Math. Syst. & Ec. 289 (1987), 1029.Google Scholar
[22]Lehto, O.. Univalent Functions and Teichmüller Spaces. Springer, New York, 1987.Google Scholar
[23]Lyubich, M. Yu.. Dynamics of rational maps: the topological picture (Russian). Uspehi Mat. Nauk. 41 (1986), 3595.Google Scholar
[24]Makienko, P.. Iteration of analytic functions in ℂ* (Russian). Dokl. Akad. Nauk. SSSR 297 (1987), 3537.Google Scholar
[25]Milnor, J.. Dynamics in one complex variable: introductory lectures. Preprint, S.U.N.Y., Stony Brook, 1990.Google Scholar
[26]Rådström, H.. On the iteration of analytic functions. Math. Scand. 1 (1953), 8592.Google Scholar
[27]Shishikura, M.. On the quasiconformal surgery of the rational functions. Ann. Scient. Ec. Norm. Sup. (4) 20 (1987), 129.CrossRefGoogle Scholar