Article contents
Invariant tori and topological entropy in Tonelli Lagrangian systems on the 2-torus
Published online by Cambridge University Press: 19 March 2015
Abstract
We study the Euler–Lagrange flow of a Tonelli Lagrangian on the 2-torus $\mathbb{T}^{2}$ at a fixed energy level ${\mathcal{E}}\subset T\mathbb{T}^{2}$ strictly above Mañé’s strict critical value. We prove that, if for some rational direction ${\it\zeta}\in S^{1}$ there is no invariant graph ${\mathcal{T}}\subset {\mathcal{E}}$ over $\mathbb{T}^{2}$ for the Euler–Lagrange flow with the property that all orbits on ${\mathcal{T}}$ have an asymptotic direction equal to ${\it\zeta}$, then there are chaotic dynamics in ${\mathcal{E}}$. This implies that, if the topological entropy of the Euler–Lagrange flow in ${\mathcal{E}}$ vanishes, then in ${\mathcal{E}}$ there are invariant graphs for all asymptotic directions ${\it\zeta}\in S^{1}$ and integrable-like behavior on a large scale.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2015
References
- 2
- Cited by