Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:14:59.277Z Has data issue: false hasContentIssue false

Invariant rigid geometric structures and expanding maps

Published online by Cambridge University Press:  06 May 2011

YONG FANG*
Affiliation:
Département de Mathématiques, Université de Cergy-Pontoise, avenue Adolphe Chauvin, 95302, Cergy-Pontoise Cedex, France (email: [email protected])

Abstract

In the first part of this paper, we consider several natural problems about locally homogeneous rigid geometric structures. In particular, we formulate a notion of topological completeness which is adapted to the study of global rigidity of chaotic dynamical systems. In the second part of the paper, we prove the following result: let φ be a C expanding map of a closed manifold. If φ preserves a topologically complete C rigid geometric structure, then φ is C conjugate to an expanding infra-nilendomorphism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amore, A. M.. Vector fields of a finite type G-structure. J. Differential Geom. 14 (1979), 16.Google Scholar
[2]Benoist, Y.. Orbites des structures rigides (d’après M. Gromov) (Progress in Mathematics, 145). Birkhäuser, Boston, 1997, pp. 117.Google Scholar
[3]Benoist, Y.. Réseaux des groupes de Lie, Cours de M2, Université de Paris VI, 2008.Google Scholar
[4]Benoist, Y., Foulon, P. and Labourie, F.. Fots d’Anosov à distributions stable et instable différentiables. J. Amer. Math. Soc. 5 (1992), 3374.Google Scholar
[5]Benoist, Y. and Labourie, F.. Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable différentiables. Invent. Math. 111 (1993), 285308.Google Scholar
[6]Candel, A. and Quiroga-Barranco, R.. Gromov’s centralizer theorem. Geom. Dedicata 100 (2003), 123155.Google Scholar
[7]Candel, A. and Quiroga-Barranco, R.. Parallelisms, prolongations of Lie algebras and rigid goemetric structures. Manuscripta Math. 114 (2004), 335350.CrossRefGoogle Scholar
[8]Chevalley, C.. Théorie des groupes de Lie. Hermann, Paris, 1968.Google Scholar
[9]Fang, Y.. Structures géométriques rigides et systèmes dynamiques hyperboliques. PhD Thesis, Université de Paris-Sud, 2004, Web address: http://www.u-cergy.fr/rech/pages/yfang/index.html.Google Scholar
[10]Farrell, F. T. and Jones, L. E.. Examples of expanding endomorphisms on exotic tori. Invent. Math. 45 (1978), 175179.CrossRefGoogle Scholar
[11]Feres, R.. Hyperbolic dynamical systems, invariant geometric structures, and rigidity. Math. Res. Lett. 1 (1994), 1126.CrossRefGoogle Scholar
[12]Feres, R.. A differential-geometric view of normal forms of contractions. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 103121.Google Scholar
[13]Feres, R.. Rigid geometric structures and actions of semisimple Lie groups. Rigidité, groupe fondamental et dynamique (Panoramas et Synthèses, 13). Ed. Foulon, P.. Société Mathématiques de France, Paris, 2002.Google Scholar
[14]Gromov, M. and D’ambra, G.. Lectures on transformation groups: geometry and dynamics. Surveys in Differential Geometry. Lehigh University, Bethlehem, 1991, pp. 19111.Google Scholar
[15]Gromov, M.. Rigid transformation groups. Géométrie différentielle (Travaux en Cours, 33). Hermann, Paris, 1988.Google Scholar
[16]Gromov, M.. Groups of polynomial growth and expanding maps. Publ. Math. Inst. Hautes Études Sci. 53 (1981), 5373.Google Scholar
[17]Guysinski, M. and Katok, A.. Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations. Math. Res. Lett. 5 (1998), 149163.Google Scholar
[18]Hasselblatt, B.. Problems in dynamical systems and related topics raised in connection with the Clay Mathematics Institute workshop on ‘Recent Progress in Dynamics’.Google Scholar
[19]Kobayashi, S. and Nomizu, K.. Foundations of Differential Geometry, Vol. I (Interscience Tracts in Pure and Applied Mathematics, 15). Wiley-Interscience, New York, 1996.Google Scholar
[20]Shub, M.. Endomorphisms of compact differentiable manifolds. Amer. J. Math. 91 (1969), 175199.Google Scholar
[21]Springer, T. A.. Linear Algebraic Groups, 2nd edn(Progress in Mathematics, 9). Birkhäuser, Boston, 1998.Google Scholar
[22]Witte-Morris, D.. Ratner’s Theorems on Unipotent Flows (Chicago Lecture Notes in Mathematics). University of Chicago Press, Chicago, 2005.Google Scholar
[23]Zeghib, A.. Sur les groupes de transformations rigides: théorème de l’orbite dense-ouverte. Rigidité, groupe fondamental et dynamique (Panoramas et Synthèses, 13). Ed. Foulon, P.. Société Mathématiques de France, Paris, 2002.Google Scholar