Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:32:02.654Z Has data issue: false hasContentIssue false

Induction and restriction of cellular automata

Published online by Cambridge University Press:  01 April 2009

TULLIO CECCHERINI-SILBERSTEIN
Affiliation:
Dipartimento di Ingegneria, Università del Sannio, C.so Garibaldi 107, 82100 Benevento, Italy (email: [email protected])
MICHEL COORNAERT
Affiliation:
Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France (email: [email protected])

Abstract

We analyze in detail the notions of induction and restriction for cellular automata. As a by-product we extend a few classical and recent theorems on cellular automata to uncountable groups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bartholdi, L.. A converse to Moore’s and Hedlund’s theorems on cellular automata. J. Eur. Math. Soc. (JEMS) to appear.Google Scholar
[2]Ceccherini-Silberstein, T. and Coornaert, M.. The Garden of Eden theorem for linear cellular automata. Ergod. Th. & Dynam. Sys. 26 (2006), 5368.Google Scholar
[3]Ceccherini-Silberstein, T. and Coornaert, M.. Injective linear cellular automata and sofic groups. Israel J. Math. 161 (2007), 115.CrossRefGoogle Scholar
[4]Ceccherini-Silberstein, T. and Coornaert, M.. Amenability and linear cellular automata over semisimple modules of finite length. Comm. Algebra 36 (2008), 13201335.CrossRefGoogle Scholar
[5]Ceccherini-Silberstein, T. and Coornaert, M.. A generalization of the Curtis–Hedlund theorem. Theoret. Comput. Sci. 400 (2008), 225229.CrossRefGoogle Scholar
[6]Ceccherini-Silberstein, T., Grigorchuk, R. I. and de la Harpe, P.. Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces. Proc. Steklov Inst. Math. 224 (1999), 5797.Google Scholar
[7]Ceccherini-Silberstein, T. G., Machì, A. and Scarabotti, F.. Amenable groups and cellular automata. Ann. Inst. Fourier (Grenoble) 49 (1999), 673685.CrossRefGoogle Scholar
[8]Glebsky, L. Yu. and Gordon, E. I.. On surjunctivity of the transition functions of cellular automata on groups. Taiwanese J. Math. 9(3) (2005), 511520.Google Scholar
[9]Gottschalk, W.. Some general dynamical systems. Recent Advances in Topological Dynamics (Lecture Notes in Mathematics, 318). Springer, Berlin, pp. 120125.Google Scholar
[10]Gottschalk, W. H. and Hedlund, G. A.. Topological Dynamics (American Mathematical Society Colloquium Publications, 36). American Mathematical Society, Providence, RI, 1955.Google Scholar
[11]Gromov, M.. Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. (JEMS) 1 (1999), 109197.CrossRefGoogle Scholar
[12]Machì, A. and Mignosi, F.. Garden of Eden configurations for cellular automata on Cayley graphs of groups. SIAM J. Discrete Math. 6 (1993), 4456.CrossRefGoogle Scholar
[13]Moore, E. F.. Machine Models of Self-reproduction (Proceedings of Symposia in Applied Mathematics, 14). American Mathematical Society, Providence, RI, 1963, pp. 1734.Google Scholar
[14]Muller, D. E.. Class Notes. University of Illinois, Urbana IL, 1976.Google Scholar
[15]Myhill, J.. The converse of Moore’s Garden of Eden theorem. Proc. Amer. Math. Soc. 14 (1963), 685686.Google Scholar
[16]Weiss, B.. Sofic groups and dynamical systems (Ergodic theory and harmonic analysis, Mumbai, 1999). Sankhya Ser. A. 62 (2000), 350359.Google Scholar