Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:25:19.976Z Has data issue: false hasContentIssue false

Ideal tilings and symbolic dynamics for negatively curved surfaces

Published online by Cambridge University Press:  14 September 2011

DAVID FRIED*
Affiliation:
Mathematics Department, Boston University, 111 Cummington Street, Boston, MA 02215, USA (email: [email protected])

Abstract

Let X be a non-compact surface (or 2-orbifold) of finite type with a metric of strictly negative curvature. Using an ideal tiling of the universal cover of X, we give a symbolic description of the recurrent geodesics on X. This extends Series’s method of coding geodesics on the modular surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A]Artin, E.. Ein Mechanisches System mit quasi-ergodischen Bahnen. Abh. Math. Sem. Univ. Hamburg 3 (1924), 170175, or see Collected Papers. Springer, Berlin, 1965, pp. 499–504.CrossRefGoogle Scholar
[Bo]Bodelon, C.. Symbolic dynamics for hyperbolic surfaces of finite area. Doctoral Thesis, Boston University, 2001.Google Scholar
[B]Bowen, R.. Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95 (1973), 429460.CrossRefGoogle Scholar
[EO]Eberlein, P. and O’Neill, B.. Visibility manifolds. Pacific J. Math. 46 (1973), 45109.CrossRefGoogle Scholar
[EP]Epstein, D. B. A. and Penner, R. C.. Euclidean decompositions of noncompact hyperbolic manifolds. J. Differential Geom. 27 (1988), 6780.CrossRefGoogle Scholar
[FN]Fenchel, W. and Nielsen, J.. Discontinuous Groups of Isometries in the Hyperbolic Plane. De Gruyter, Berlin, 2003.Google Scholar
[F1]Fried, D.. Reduction theory over quadratic imaginary fields. J. Number Theory 110 (2005), 4474.CrossRefGoogle Scholar
[F2]Fried, D.. Symbolic dynamics for triangle groups. Invent. Math. 125 (1996), 487521.CrossRefGoogle Scholar
[F3]Fried, D.. Meromorphic zeta functions for analytic flows. Comm. Math. Phys. 174 (1995), 161190.CrossRefGoogle Scholar
[F4]Fried, D.. Symbolic dynamics for geometrically finite groups. Preprint.Google Scholar
[H]Hurwitz, A.. Uber die Reduktion der binaren quadratischen Formen. Math. Ann. 45 (1894), 85117, or see Mathematische Werke. Birkhäuser, Basel, 1933, Band II, pp. 157–190.CrossRefGoogle Scholar
[K]Klein, F.. Ausgewahlte Kapitel der Zahlentheorie. Teubner, Leipzig, 1907.Google Scholar
[M]Morse, M.. Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921), 84100, or see Selected Papers. Springer, New York, 1981, pp. 21–37.CrossRefGoogle Scholar
[R]Ratcliffe, J.. Foundations of Hyperbolic Manifolds. Springer, New York, 1994.CrossRefGoogle Scholar
[Ra]Ratner, M. E.. Markov decomposition for a U-flow on a 3-dimensional manifold. Math. Notes 6 (1969), 880886.CrossRefGoogle Scholar
[Ro]Rogers, L. J.. On function sums connected with the series ∑ x n/n 2. Proc. Lond. Math. Soc. 4 (1907), 169189.CrossRefGoogle Scholar
[S]Series, C.. The modular surface and continued fractions. J. Lond. Math. Soc. (2) 31 (1985), 6980.CrossRefGoogle Scholar
[T]Thurston, W. P.. The Geometry and Topology of Three-Manifolds (Lecture Notes). Princeton University, Princeton, NJ, 1980. Electronic edition at http://library.msri.org/books/gt3m.Google Scholar