Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T00:58:18.195Z Has data issue: false hasContentIssue false

Hedgehogs of Hausdorff dimension one

Published online by Cambridge University Press:  15 October 2008

KINGSHOOK BISWAS*
Affiliation:
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA (email: [email protected]) Ramakrishna Mission Vivekananda University, PO Belur Math, Dt Howrah WB 711 202, India

Abstract

We present a construction of hedgehogs for holomorphic maps with an indifferent fixed point. We construct, for a family of commuting nonlinearizable maps, a common hedgehog of Hausdorff dimension one, the minimum possible.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Birkhoff, G. D.. Surface transformations and their dynamical applications. Acta Math. 43 (1920) (also, Collected Mathematical Papers II, p. 111).Google Scholar
[2] Biswas, K.. Smooth combs inside hedgehogs. Discrete Contin. Dyn. Syst. 12(5) (2005), 853880.Google Scholar
[3] Cremer, H.. Zum Zentrumproblem. Math. Ann. 98 (1928), 151153.CrossRefGoogle Scholar
[4] Cremer, H.. Über die Häufigkeit der Nichtzentren. Math. Ann. 115 (1938), 573580.Google Scholar
[5] Perez-Marco, R.. Fixed points and circle maps. Acta Math. 179(2) (1997), 243294.CrossRefGoogle Scholar
[6] Perez-Marco, R.. Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold. Ann. Sci. École Norm. Sup. 4 serie 26 (1993), 565644 (C. R. Acad. Sci. Paris 312 (1991), 105–121).CrossRefGoogle Scholar
[7] Perez-Marco, R.. Uncountable number of symmetries for non-linearisable holomorphic dynamics. Invent. Math. 119(1) (1995), 67127 (C. R. Acad. Sci. Paris 313 (1991), 461–464).Google Scholar
[8] Perez-Marco, R.. Siegel disks with smooth boundary. Preprint, Université de PARIS-SUD, 1997, www.math.ucla.edu/∼ricardo, submitted to the Ann. of Math. in 1997.Google Scholar
[9] Perez-Marco, R.. Hedgehog’s dynamics. Preprint, UCLA, 1996.Google Scholar
[10] Perez-Marco, R.. Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold. Ann. Sci. École Norm. Sup. 4 serie 26 (1993), 565644 (C. R. Acad. Sci. Paris 312 (1991), 105–121).CrossRefGoogle Scholar
[11] Siegel, C. L.. Iteration of analytic functions. Ann. Math. 43 (1942), 807812.CrossRefGoogle Scholar
[12] Yoccoz, J. C.. Petits diviseurs en dimension one. S.M.F., Astérisque 231 (1995).Google Scholar