Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T04:03:49.403Z Has data issue: false hasContentIssue false

The Hausdorff dimension of Julia sets of entire functions

Published online by Cambridge University Press:  19 September 2008

Gwyneth M. Stallard
Affiliation:
Department of Mathematics, Imperial College of Science, Technology and Medicine, London SW72AZ, UK

Abstract

We construct a set of transcendental entire functions such that the Hausdorff dimensions of the Julia sets of these functions have greatest lower bound equal to one.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I. Math. 1 (1975), 277283.Google Scholar
[2]Brolin, H.. Invariant sets under iteration of rational functions. Arkiv Mat. 6 (1965), 103144.Google Scholar
[3]Duren, P. L.. Univalent Functions. Springer, New York, 1953.Google Scholar
[4]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271;Google Scholar
Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 48 (1920), 3394208314.Google Scholar
[5]Fatou, P.. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337370.Google Scholar
[6]Garber, V.. On the iteration of rational functions. Math. Proc. Camb. Phil. Soc. 84 (1978), 497505.CrossRefGoogle Scholar
[7]Hayman, W. K. & Kennedy, P. B.. Subharmonic Functions I. Academic Press, London, 1976.Google Scholar
[8]McMullen, C.. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300 (1987), 329342.CrossRefGoogle Scholar
[9]Pólya, G. & Szegö, G.. Problems and Theorems in Analysis I (Part III, problems 158–160). Springer, New York, 1972.Google Scholar
[10]Ruelle, D.. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982), 99107.CrossRefGoogle Scholar