Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T10:55:47.308Z Has data issue: false hasContentIssue false

Geometric measures for parabolic rational maps

Published online by Cambridge University Press:  19 September 2008

M. Denker
Affiliation:
Institut für Mathematische Stochastik, Lotzestr. 13, 3400 Göttingen, Germany
M. Urbański
Affiliation:
Instytut Matematyki UMK, ul. Chopina 12/18, 87–100 Toruń, Poland

Abstract

Let h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aaronson, J., Denker, M. & Urbański, M.. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. to appear.Google Scholar
[2]Blanchard, P.. Complex analytic dynamics of the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85141.CrossRefGoogle Scholar
[3]Brolin, H.. Invariant sets under iteration of rational functions. Ark. Mat. 6 (1965), 103144.CrossRefGoogle Scholar
[4]Denker, M. & Urbański, M.. HausdorS and conformal measures on Julia sets with a rationally indifferent periodic point. J. London Math. Soc. 43 (1991), 107118.Google Scholar
[5]Denker, M. & Urbański, M.. Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points. Forum Math. 3 (1991), 561579.Google Scholar
[6]Guzmán, M.. Differentiation of integrals in ℝn. Springer Lecture Notes in Mathematics 481, Springer Verlag, 1975.Google Scholar
[7]Hille, E.. Analytic function theory. Ginn and Company: Boston-New York-Chicago-Atlanta-Dallas-Palo Alto-Toronto, 1962.Google Scholar
[8]Milnor, J.. Dynamics in one complex variable: Introductory Lectures, Preprint (1990).Google Scholar
[9]Sullivan, D.. Conformal dynamical systems. In: Geometric Dynamics. Springer Lecture Notes in Mathematics 1007, Springer Verlag, 1983, pp 725752.CrossRefGoogle Scholar
[10]Sullivan, D.. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153 (1984), 259277.Google Scholar