Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:59:50.119Z Has data issue: false hasContentIssue false

A full family of multimodal maps on the circle

Published online by Cambridge University Press:  20 July 2010

WELINGTON DE MELO
Affiliation:
Associação Instituto Nacional de Matemática Pura e Aplicada – Est. Da Castorina 110, Rio de Janeiro, RJ, Cep: 22460-320, Brazil (email: [email protected])
PEDRO A. S. SALOMÃO
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo, SP, Cep: 05508-090, Brazil (email: [email protected], [email protected])
EDSON VARGAS
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo, SP, Cep: 05508-090, Brazil (email: [email protected], [email protected])

Abstract

We exhibit a family of trigonometric polynomials inducing a family of 2m-multimodal maps on the circle which contains all relevant dynamical behavior.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Avila, A., Lyubich, M., de Melo, W. and van Strien, S.. Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math. 154(3) (2003), 451550.CrossRefGoogle Scholar
[2]Bruin, H. and van Strien, S.. Monotonicity of entropy for real multimodal maps, arXiv:0905.3377v1 [math.DS].Google Scholar
[3]Douady, A. and Hubbard, J. H.. A proof of Thurston’s topological characterization of rational functions. Acta Math. 171(2) (1993), 263297.Google Scholar
[4]Galeeva, R. and van Strien, S.. Which families of l-modal maps are full? Trans. Amer. Math. Soc. 348(8) (1996), 32153221.CrossRefGoogle Scholar
[5]Martens, M. and de Melo, W.. Universal models for Lorenz maps. Ergod. Th. & Dynam. Sys. 21(3) (2001), 833860.CrossRefGoogle Scholar
[6]de Melo, W. and van Strien, S.. One-dimensional Dynamics. Springer, Berlin, 1993.Google Scholar
[7]Milnor, J. W.. Topology from the differentiable viewpoint, based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, VA, 1965.Google Scholar
[8]Milnor, J. W. and Thurston, W. P.. On Iterated Maps of the Interval (Lecture Notes in Mathematics, 1342). Springer, Berlin, 1988, pp. 465563.Google Scholar
[9]Milnor, J. W. and Tresser, C.. On entropy and monotonicity for real cubic maps. Comm. Math. Phys. 209 (2000), 123178.CrossRefGoogle Scholar
[10]Poincaré, H.. Sur les courbes définies par les equations différentielles. J. Math. Pures Appl. (4) 1 (1885), 167244.Google Scholar
[11]Salomão, P. A. S.. The Thurston operator for semi-finite combinatorics. Discrete Contin. Dyn. Syst. 16(4) (2006), 883896.CrossRefGoogle Scholar
[12]Thurston, W. P.. On the combinatorics of iterated rational maps. Complex Dynamics. A.K. Peters, Wellesley, MA, 2009, pp. 3137.CrossRefGoogle Scholar