Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T01:10:26.123Z Has data issue: false hasContentIssue false

Flow–orbit equivalence for minimal Cantor systems

Published online by Cambridge University Press:  01 April 2008

WOJCIECH KOSEK
Affiliation:
Mathematics Department, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO 80903, USA (email: [email protected])
NICHOLAS ORMES
Affiliation:
Mathematics Department, University of Denver, 2360 S. Gaylord St., Denver, CO 80208, USA (email: [email protected])
DANIEL J. RUDOLPH
Affiliation:
Mathematics Department, Colorado State University, Fort Collins, CO 80523-1874, USA (email: [email protected])

Abstract

This paper is about flow–orbit equivalence, a topological analog of even Kakutani equivalence. In addition to establishing many basic facts about this relation, we characterize the conjugacies of induced systems that can be extended to a flow–orbit equivalence. We also describe the relationship between flow–orbit equivalence and a distortion function of an orbit equivalence. We show that, if the distortion of an orbit equivalence is zero, then it is in fact a flow–orbit equivalence, and that the converse is true up to a conjugation by an element of the full group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bowen, R. and Franks, J.. Homology for zero-dimensional nonwandering sets. Ann. of Math. (2) 106(1) (1977), 7392.CrossRefGoogle Scholar
[2]Boyle, M.. Topological orbit equivalence and factor maps in symbolic dynamics, PhD Thesis, University of Washington, Seattle, 1983.Google Scholar
[3]Boyle, M.. Flow equivalence of shifts of finite type via positive factorizations. Pacific J. Math. 204(2) (2002), 273317.CrossRefGoogle Scholar
[4]Boyle, M. and Handelman, D.. Orbit equivalence, flow equivalence and ordered cohomology. Israel J. Math. 95 (1996), 169210.CrossRefGoogle Scholar
[5]Boyle, M. and Huang, D.. Poset block equivalence of integral matrices. Trans. Amer. Math. Soc. 355(10) (2003), 38613886 (electronic).CrossRefGoogle Scholar
[6]Boyle, M. and Tomiyama, J.. Bounded topological orbit equivalence and C *-algebras. J. Math. Soc. Japan 50(2) (1998), 317329.CrossRefGoogle Scholar
[7]Cuntz, J.. A class of C *-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C *-algebras. Invent. Math. 63(1) (1981), 2540.CrossRefGoogle Scholar
[8]Cuntz, J. and Krieger, W.. A class of C *-algebras and topological Markov chains. Invent. Math. 56(3) (1980), 251268.CrossRefGoogle Scholar
[9]Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups (English summary). Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.CrossRefGoogle Scholar
[10]Dartnell, P., Durand, F. and Maass, A.. Orbit equivalence and Kakutani equivalence with Sturmian subshifts. Studia Math. 142(1) (2000), 2545.CrossRefGoogle Scholar
[11]del Junco, A. and Rudolph, D. J.. Kakutani equivalence of ergodic actions. Ergod. Th. & Dynam. Sys. 4(1) (1984), 89104.CrossRefGoogle Scholar
[12]Dye, H. A.. On groups of measure preserving transformation. I. Amer. J. Math. 81 (1959), 119159.CrossRefGoogle Scholar
[13]Fieldsteel, A., del Junco, A. and Rudolph, D. J.. α-equivalence: a refinement of Kakutani equivalence. Ergod. Th. & Dynam. Sys. 14(1) (1994), 69102.CrossRefGoogle Scholar
[14]Fieldsteel, A. and Rudolph, D. J.. An ergodic transformation with trivial Kakutani centralizer. Ergod. Th. & Dynam. Sys. 12(3) (1992), 459478.CrossRefGoogle Scholar
[15]Franks, J.. Flow equivalence of subshifts of finite type. Ergod. Th. & Dynam. Sys. 4(1) (1984), 5366.CrossRefGoogle Scholar
[16]Friedman, N. A. and Ornstein, D. S.. Ergodic transformations induce mixing transformations. Adv. Math. 10 (1973), 147163.CrossRefGoogle Scholar
[17]Giordano, T., Putnam, I. F. and Skau, C. F.. Topological orbit equivalence and C *-crossed products. J. Reine Angew. Math. 469 (1995), 51111.Google Scholar
[18]Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6) (1992), 827864.CrossRefGoogle Scholar
[19]Huang, D.. Flow equivalence of reducible shifts of finite type and Cuntz–Krieger algebras. J. Reine Angew. Math. 462 (1995), 185217.Google Scholar
[20]Kac, M.. On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. 53 (1947), 10021010.CrossRefGoogle Scholar
[21]Whalen Kammeyer, J. and Rudolph, D. J.. Restricted Orbit Equivalence for Actions of Discrete Amenable Groups (Cambridge Tracts in Mathematics, 146). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
[22]Whalen Kammeyer, J. and Rudolph, D. J.. Restricted orbit equivalence for ergodic actions. I. Ergod. Th. & Dynam. Sys. 17(5) (1997), 10831129.CrossRefGoogle Scholar
[23]Matui, H.. Some remarks on topological orbit equivalence of Cantor minimal systems. Internat. J. Math. 14(1) (2003), 5568.Google Scholar
[24]Ormes, N. S.. Strong orbit realization for minimal homeomorphisms. J. Anal. Math. 71 (1997), 103133.CrossRefGoogle Scholar
[25]Ornstein, D. S., Rudolph, D. J. and Weiss, B.. Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37(262) (1982).Google Scholar
[26]Packer, J. A.. Flow equivalence for dynamical systems and the corresponding C *-algebras. Special Classes of Linear Operators and Other Topics (Bucharest, 1986) (Operator Theory: Advances and Applications, 28). Birkhäuser, Basel, 1988, pp. 223242.CrossRefGoogle Scholar
[27]Parry, W. and Sullivan, D.. A topological invariant of flows on 1-dimensional spaces. Topology 14(4) (1975), 297299.CrossRefGoogle Scholar
[28]Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 1987.CrossRefGoogle Scholar
[29]Rudolph, D. J.. Restricted orbit equivalence. Mem. Amer. Math. Soc. 54(323) (1985).Google Scholar