Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T22:57:34.247Z Has data issue: false hasContentIssue false

Exponentially decaying eigenvectors for certain almost periodic operators

Published online by Cambridge University Press:  04 May 2004

NORBERT RIEDEL
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA (e-mail: [email protected])

Abstract

For every point $\chi$ in the spectrum of the operator $(h(\delta)\xi)=\xi_{n+1}+\xi_{n-1}+\beta(\delta e^{2\pi\alpha ni}+\delta^{-1}e^{-2\pi\alpha ni})\xi_n$ on $\ell^2(\mathbb{Z})$ there exists a complex number x of modulus one such that the equation $\xi_{n+1}+\xi_{n-1}+\beta(x\delta e^{2\pi\alpha ni}+\bar{x}\delta^{-1}e^{-2\pi\alpha ni})\xi_n=\chi\xi_n$ has a non-trivial solution satisfying the condition $\limsup_{|n|\to\infty}|\xi_n|^{1/|n|}\le\delta^{-1}\beta^{-1}$ provided that $\beta,\delta>1$ and $\alpha$ satisfies the diophantine condition $\lim_{n\to\infty}|{\rm sin}\,\pi\alpha n|^{-{1/n}}=1$. The parameters $x\delta$ and $\chi$ are in the range of analytic functions which are defined on a Riemann surface covering the resolvent set of the operator h(1).

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)