Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:27:24.652Z Has data issue: false hasContentIssue false

Exponential stability for small perturbations of steep integrable Hamiltonian systems – CORRIGENDUM

Published online by Cambridge University Press:  02 May 2014

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Corrigendum
Copyright
© Cambridge University Press, 2014 

References

Bounemoura, A.. Effective stability for Gevrey and finitely differentiable prevalent Hamiltonians. Comm. Math. Phys. 307(1) (2011), 157183.CrossRefGoogle Scholar
Bounemoura, A. and Niederman, L.. Generic Nekhoroshev theory without small divisors. Ann. Inst. Fourier 62(1) (2012), 277324.Google Scholar
Lochak, P. and Neishtadt, A. I.. Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos 2(4) (1992), 495499.CrossRefGoogle ScholarPubMed
Niederman, L.. Exponential stability for small perturbations of steep integrable Hamiltonian systems. Ergod. Th. & Dynam. Syst. 24(2) (2004), 593608.Google Scholar
Niederman, L.. Prevalence of exponential stability among nearly integrable Hamiltonian systems. Ergod. Th. & Dynam. Syst. 27(3) (2007), 905928.Google Scholar
Pöschel, J.. Nekhorochev estimates for quasi-convex Hamiltonian systems. Math. Z. 213 (1993), 187217.CrossRefGoogle Scholar