Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:32:03.041Z Has data issue: false hasContentIssue false

Existence of generic cubic homoclinic tangencies for Hénon maps

Published online by Cambridge University Press:  08 May 2012

SHIN KIRIKI
Affiliation:
Department of Mathematics, Kyoto University of Education, 1 Fukakusa-Fujinomori, Fushimi-ku, Kyoto, 612-8522, Japan (email: [email protected])
TERUHIKO SOMA
Affiliation:
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan (email: [email protected])

Abstract

In this paper, we show that the Hénon map $\varphi _{a,b}$ has a generically unfolding cubic tangency for some $(a,b)$ arbitrarily close to $(-2,0)$ by applying results of Gonchenko, Shilnikov and Turaev [On models with non-rough Poincaré homoclinic curves. Physica D 62(1–4) (1993), 1–14; Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits. Chaos 6(1) (1996), 15–31; On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle. Proc. Steklov Inst. Math.216 (1997), 70–118; Homoclinic tangencies of an arbitrary order in Newhouse domains. Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. 67 (1999), 69–128, translation in J. Math. Sci. 105 (2001), 1738–1778; Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity 20 (2007), 241–275]. Combining this fact with theorems in Kiriki and Soma [Persistent antimonotonic bifurcations and strange attractors for cubic homoclinic tangencies. Nonlinearity 21(5) (2008), 1105–1140], one can observe the new phenomena in the Hénon family, appearance of persistent antimonotonic tangencies and cubic polynomial-like strange attractors.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Afraimovich, V. S. and Shilnikov, L. P.. On critical sets of Morse–Smale systems. Trans. Moscow Math. Soc. 28 (1973), 179212.Google Scholar
[2]Benedicks, M. and Carleson, L.. On iterations of $1-ax^2$ on $(-1,1)$. Ann. of Math. (2) 122(1) (1985), 125.Google Scholar
[3]Benedicks, M. and Carleson, L.. The dynamics of the Hénon map. Ann. of Math. (2) 133(1) (1991), 73169.Google Scholar
[4]Benedicks, M. and Viana, M.. Random perturbations and statistical properties of Hénon-like maps. Ann. Inst. Henri Poincaré (C) Anal. Non Linear Anal. 23 (2006), 713752.Google Scholar
[5]Benedicks, M. and Young, L.-S.. SBR-measures for certain Hénon maps. Invent. Math. 112 (1993), 541576.CrossRefGoogle Scholar
[6]Bonatti, C., Díaz, L. J. and Viana, M.. Dynamics beyond uniform hyperbolicity. Mathematical Physics, III (Encyclopedia of Mathematical Sciences, 102). Springer, Berlin, 2005.Google Scholar
[7]Bonatti, C., Díaz, L. J. and Vuillemin, F.. Cubic tangencies and hyperbolic diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.) 29(1) (1998), 99144.Google Scholar
[8]Carvalho, M.. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete Contin. Dyn. Syst. 4(4) (1998), 765782.Google Scholar
[9]Gonchenko, S. V.. On a two-parameter family of systems close to a system with a nonrough homoclinic curve. I. Selecta Math. Soviet. 10(1) (1991), 6980.Google Scholar
[10]Gonchenko, S. V. and Shilnikov, L. P.. Invariants of $\Omega $-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory. Ukrainian Math. J. 42(2) (1990), 134140.Google Scholar
[11]Gonchenko, S. V. and Shilnikov, L. P.. On moduli of systems with a structurally unstable homoclinic Poincaré curve. Russian Acad. Sci. Izv. Math. 41(3) (1993), 417445.Google Scholar
[12]Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V.. On models with non-rough Poincaré homoclinic curves. Physica D 62(1–4) (1993), 114.CrossRefGoogle Scholar
[13]Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V.. Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits. Chaos 6(1) (1996), 1531.Google Scholar
[14]Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V.. On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle. Proc. Steklov Inst. Math. 216 (1997), 70118.Google Scholar
[15]Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V.. Homoclinic tangencies of an arbitrary order in Newhouse domains. Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. 67 (1999), 69128, translation in J. Math. Sci. 105 (2001), 1738–1778.Google Scholar
[16]Gonchenko, S. V., Shilnikov, L. P. and Turaev, D. V.. Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity 20 (2007), 241275.CrossRefGoogle Scholar
[17]Hénon, M.. A two dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976), 6977.CrossRefGoogle Scholar
[18]Kan, I., Koçak, H. and Yorke, J. A.. Antimonotonicity: concurrent creation and annihilation of periodic orbits. Ann. of Math. (2) 136(2) (1992), 219252.Google Scholar
[19]Kiriki, S., Li, M. and Soma, T.. Coexistence of invariant sets with and without SRB measures in Hénon family. Nonlinearity 23(9) (2010), 22532269.CrossRefGoogle Scholar
[20]Kiriki, S. and Soma, T.. Persistent antimonotonic bifurcations and strange attractors for cubic homoclinic tangencies. Nonlinearity 21(5) (2008), 11051140.CrossRefGoogle Scholar
[21]Luzzatto, S. and Viana, M.. Parameter exclusions in Hénon-like systems. Russian Math. Surveys 58 (2003), 10531092.CrossRefGoogle Scholar
[22]Milnor, J. and Thurston, W.. On iterated maps of the interval. Dynamical Systems (College Park, MD, 1986–87) (Lecture Notes in Mathematics, 1342). Springer, Berlin, 1988, pp. 465563.Google Scholar
[23]Mora, L. and Viana, M.. Abundance of strange attractors. Acta Math. 171(1) (1993), 171.Google Scholar
[24]Robinson, C.. Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, 2nd edn(Studies in Advanced Mathematics). CRC Press, Boca Raton, FL, 1999.Google Scholar
[25]Wang, Q. and Young, L.-S.. Strange attractors with one direction of instability. Comm. Math. Phys. 218(1) (2001), 197.CrossRefGoogle Scholar