Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T01:32:14.251Z Has data issue: false hasContentIssue false

Ergodic boundary representations

Published online by Cambridge University Press:  04 December 2017

A. BOYER
Affiliation:
Weizmann Institute of Science, Rehovot, Israel email [email protected]
G. LINK
Affiliation:
KIT, Institut für Algebra und Geometrie, Karlsruher, Germany email [email protected]
CH. PITTET
Affiliation:
I2M, UMR 7373 CNRS, Aix-Marseille Université, Marseille, France email [email protected]

Abstract

We prove a von Neumann-type ergodic theorem for averages of unitary operators arising from the Furstenberg–Poisson boundary representation (the quasi-regular representation) of any lattice in a non-compact connected semisimple Lie group with finite center.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anantharaman, C. and Anker, J.-P. et al. . Théorèmes ergodiques pour les actions de groupes (Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], 41) . L’Enseignement Mathématique, Geneva, 2010, (in French) with a foreword in English by Amos Nevo.Google Scholar
Arnol’d, V. I. and Krylov, A. L.. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain. Dokl. Akad. Nauk SSSR 148 (1963), 912 (in Russian).Google Scholar
Bader, U. and Muchnik, R.. Boundary unitary representations—irreducibility and rigidity. J. Mod. Dyn. 5(1) (2011), 4969.Google Scholar
Bekka, B., de la Harpe, P. and Valette, A.. Kazhdan’s Property (T) (New Mathematical Monographs, 11) . Cambridge University Press, Cambridge, UK, 2008.Google Scholar
Bourdon, M.. Structure conforme au bord et flot géodésique d’un CAT(-1)-espace. Enseign. Math. (2) 41(1–2) (1995), 63102 (in French, with English and French summaries).Google Scholar
Bowen, L. and Nevo, A.. von Neumann and Birkhoff ergodic theorems for negatively curved groups. Ann. Sci. Éc. Norm. Supér. (4) 48(5) (2015), 11131147 (in English, with English and French summaries).Google Scholar
Boyer, A.. Equidistribution, ergodicity and irreducibility in CAT(-1) spaces. Groups Geom. Dyn. 11(3) (2017), 777818.Google Scholar
Boyer, A.. Sur certains aspects de la propriété RD pour des représentations sur les bords de Poisson–Furstenberg. Aix-Marseille University, Marseille, 2014, pp. 192 (in French).Google Scholar
Boyer, A. and Antoine, P.-L.. An ergodic theorem for the quasi-regular representation of the free group. Bull. Belg. Math. Soc. Simon Stevin 24(2) (2017), 243255.Google Scholar
Boyer, A. and Mayeda, D.. Equidistribution, ergodicity and irreducibility associated with Gibbs measures. Comment. Math. Helv. 92(2) (2017), 349387.Google Scholar
Chatterji, I.. Introduction to the rapid decay property. (English summary) Around Langlands Correspondences (Contemporary Mathematics, 691). American Mathematical Society, Providence, RI, 2017, pp. 53–72.Google Scholar
Connell, C. and Muchnik, R.. Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces. Geom. Funct. Anal. 17(3) (2007), 707769.Google Scholar
Cowling, M. and Steger, T.. The irreducibility of restrictions of unitary representations to lattices. J. Reine Angew. Math. 420 (1991), 8598.Google Scholar
Dal’Bo, F., Peigné, M., Picaud, J.-C. and Sambusetti, A.. On the growth of nonuniform lattices in pinched negatively curved manifolds. J. Reine Angew. Math. 627 (2009), 3152.Google Scholar
Eskin, A. and McMullen, C.. Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1) (1993), 181209.Google Scholar
Gangolli, R. and Varadarajan, V. S.. Harmonic Analysis of Spherical Functions on Real Reductive Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 101) . Springer, Berlin, 1988.Google Scholar
Garncarek, L.. Boundary representations of hyperbolic groups. Preprint, 2014, arXiv:1404.0903, 1–20.Google Scholar
Gorodnik, A. and Maucourant, F.. Proximality and equidistribution on the Furstenberg boundary. Geom. Dedicata 113 (2005), 197213.Google Scholar
Gorodnik, A. and Nevo, A.. The Ergodic Theory of Lattice Subgroups (Annals of Mathematics Studies, 172) . Princeton University Press, Princeton, NJ, 2010.Google Scholar
Gorodnik, A. and Oh, H.. Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary. Duke Math. J. 139(3) (2007), 483525.Google Scholar
Guivarc’h, Y.. Généralisation d’un théorème de von Neumann. C. R. Math. Acad. Sci. Paris 268 (1969), A1020A1023 (in French).Google Scholar
Helgason, S.. Differential geometry, Lie Groups, and Symmetric Spaces (Graduate Studies in Mathematics, 34) . American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.Google Scholar
Kaimanovich, V. A.. Double ergodicity of the Poisson boundary and applications to bounded cohomology. Geom. Funct. Anal. 13(4) (2003), 852861.Google Scholar
Knapp, A. W.. Representation Theory of Semisimple Groups (Princeton Landmarks in Mathematics) . Princeton University Press, Princeton, NJ, 2001. An overview based on examples; reprint of the 1986 original.Google Scholar
Lindenstrauss, E.. Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 8290 (electronic).Google Scholar
Nevo, A.. Pointwise Ergodic Theorems for Actions of Groups (Handbook of Dynamical Systems, 1B) . Elsevier B. V., Amsterdam, 2006, pp. 871982.Google Scholar
Ricks, R.. Flat strips, Bowen–Margulis measures, and mixing of the geodesic flow for rank-one CAT(0) spaces. Ergod. Th. & Dynam. Sys. 37(3) (2017), 939970.Google Scholar
Roblin, T.. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.) (95) (2003), vi+96 (in French, with English and French summaries).Google Scholar
Schlichtkrull, H.. On the boundary behaviour of generalized Poisson integrals on symmetric spaces. Trans. Amer. Math. Soc. 290(1) (1985), 273280.Google Scholar
Shalom, Y.. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank-one transformation group. Ann. of Math. (2) 152(1) (2000), 113182.Google Scholar
Sjögren, P.. Admissible convergence of Poisson integrals in symmetric spaces. Ann. of Math. (2) 124(2) (1986), 313335.Google Scholar
Sjögren, P.. Convergence for the square root of the Poisson kernel. Pacific J. Math. 131(2) (1988), 361391.Google Scholar
Tempelman, A.. Ergodic Theorems for Group Actions (Mathematics and its Applications, 78) . Kluwer Academic, Dordrecht, The Netherlands, 1992. Informational and thermodynamical aspects; translated and revised from the 1986 Russian original.Google Scholar