Article contents
Equilibrium states for piecewise monotonic transformations
Published online by Cambridge University Press: 13 August 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We show that equilibrium states μ of a function φ on ([0,1], T), where T is piecewise monotonic, have strong ergodic properties in the following three cases:
(i) sup φ — inf φ <htop(T) and φ is of bounded variation.
(ii) φ satisfies a variation condition and T has a local specification property.
(iii) φ = —log |T′|, which gives an absolutely continuous μ, T is C2, the orbits of the critical points of T are finite, and all periodic orbits of T are uniformly repelling.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1982
References
REFERENCES
[1]Denker, M., Grillenberger, C. & Sigmund, K.. Ergodic Theory on Compact Spaces. Lecture Notes in Math. no. 527. Springer: Berlin, 1976.CrossRefGoogle Scholar
[3]Hofbauer, F. & Keller, G.. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Zeitsch. 180 (1982), 119–140.CrossRefGoogle Scholar
[4]Hofbauer, F.. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Israel J. Math. 34 (1979), 213–237.CrossRefGoogle Scholar
[5]Hofbauer, F.. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II. Israel. J. Math. 38 (1981), 107–115.CrossRefGoogle Scholar
[6]Hofbauer, F.. The structure of piecewise monotonic transformations. Ergod. Th. & Dynam. Sys. 1 (1981), 159–178.CrossRefGoogle Scholar
[7]Hofbauer, F.. Maximal measures for piecewise monotonically increasing transformations on [0,1]. Ergodic Theory. Lecture Notes in Math. no. 729, pp. 66–77. Springer: Berlin, 1979.CrossRefGoogle Scholar
[8]Hofbauer, F.. Examples for the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc. 228 (1977), 223–241.CrossRefGoogle Scholar
[9]Misiurewicz, M.. Absolutely continuous measures for certain Markov maps of an interval. (Preprint IHES.)Google Scholar
[10]Misiurewicz, M.. Absolutely continuous measures for certain maps of an interval. Publ. Math. IHES. 53 (1981), 17–51.CrossRefGoogle Scholar
[11]Szlenk, W.. Some dynamical properties of certain differentiable mappings of an interval I. Bol. Soc. Math. Mexico. 24 (1979), 57–82.Google Scholar
[12]Szlenk, W.. Some dynamical properties of certain differentiable mappings of an interval II. (Preprint IHES.)Google Scholar
[13]Walters, P.. Equilibrium states for β-transformations and related transformations. Math. Z. 159 (1978), 65–88.CrossRefGoogle Scholar
You have
Access
- 29
- Cited by