No CrossRef data available.
Article contents
Equicontinuous geodesic flows
Published online by Cambridge University Press: 02 March 2009
Abstract
This article is about the interplay between topological dynamics and differential geometry. One could ask how much information about the geometry is carried in the dynamics of the geodesic flow. It was proved in Paternain [Expansive geodesic flows on surfaces. Ergod. Th. & Dynam. Sys.13 (1993), 153–165] that an expansive geodesic flow on a surface implies that there exist no conjugate points. Instead of considering concepts that relate to chaotic behavior (such as expansiveness), we focus on notions for describing the stability of orbits in dynamical systems, specifically, equicontinuity and distality. In this paper we give a new sufficient and necessary condition for a compact Riemannian surface to have all geodesics closed; this is the idea of a P-manifold: (M,g) is a P-manifold if and only if the geodesic flow SM×ℝ→SM is equicontinuous. We also prove a weaker theorem for flows on manifolds of dimension three. Finally, we discuss some properties of equicontinuous geodesic flows on non-compact surfaces and on higher-dimensional manifolds.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2009