Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:39:14.469Z Has data issue: false hasContentIssue false

Entropy pairs for a measure

Published online by Cambridge University Press:  19 September 2008

F. Blanchard
Affiliation:
CNRS, Laboratoire de Mathématiques Discrètes-Case 930–163 avenue de Luminy-13288 Marseille Cedex 09, France
B. Host
Affiliation:
Université d-Aix-Marseille II and Laboratoire de Mathématiques Discrétes-Case 930–163 avenue de Luminy-13288 Marseille Cedex 09, France
A. Maass
Affiliation:
CNRS-Laboratoire de Mathématiques Discrètes-Case 930–163 avenue de Luminy-13288 Marseille Cedex 09, France and Departamento de Ingenieria Matemàtica, Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile
S. Martinez
Affiliation:
Universidad de Chile, Casilla 170/3 Correo 3, Santiago, Chile
D. J. Rudolph
Affiliation:
Mathematics Department, University of Maryland, College Park, Md 20742, USA and Laboratoire de Mathématiques Discrètes-Case 930–163 avenue de Luminy-13288 Marseille Cedex 09, France

Abstract

We define entropy pairs for an invariant measure µ on a topological dynamical system (X, T), and show they allow one to construct the maximal topological factorwith entropy 0 for µ. Then we prove that for any µ, a µ-entropy pair is always topologically so, and the reverse is true when (X, T) is uniquely ergodic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blanchard, F.. A disjointness theorem involving topological entropy. Bull. Soc. Math. (France). 121 (1993), 465478.Google Scholar
[2]Blanchard, F. and Lacroix, Y.. Zero-entropy factors of topological flows. Proc. Amer. Math. Soc. 119 (1993), 985992.CrossRefGoogle Scholar
[3]Burton, R. and Rothstein, A.. Isomorphism in ergodic theory. Unpublished notes.Google Scholar
[4]Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic theory on compact spaces. Springer Lecture Notes 527. Springer: Berlin, 1975.Google Scholar
[5]Glasner, E. and Weiss, B.. Strictly ergodic uniform positive entropy models. Bull. Soc. Math. (France). To appear.Google Scholar
[6]Ornstein, D.. An application of ergodic theory to probability theory. Ann. Prob. 1 (1973), 4365.CrossRefGoogle Scholar
[7]Rudolph, D. J.. Fundamentals of Measurable Dynamics. Clarendon: Oxford, 1990.Google Scholar
[8]Thouvenot, J.-P.. Une classe de systémes pour lesquels la conjecture de Pinsker est vraie. Israel J. Math. 21 (1975), 208214.Google Scholar