Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:26:22.705Z Has data issue: false hasContentIssue false

Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites

Published online by Cambridge University Press:  02 February 2010

ZDENĚK KOČAN
Affiliation:
Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 OPAVA, Czech Republic (email: [email protected], [email protected], [email protected])
VERONIKA KORNECKÁ-KURKOVÁ
Affiliation:
Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 OPAVA, Czech Republic (email: [email protected], [email protected], [email protected])
MICHAL MÁLEK
Affiliation:
Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 OPAVA, Czech Republic (email: [email protected], [email protected], [email protected]) Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

It is known that the positiveness of topological entropy, the existence of a horseshoe and the existence of a homoclinic trajectory are mutually equivalent, for interval maps. The aim of the paper is to investigate the relations between the properties for continuous maps of trees, graphs and dendrites. We consider three different definitions of a horseshoe and two different definitions of a homoclinic trajectory. All the properties are mutually equivalent for tree maps, whereas not for maps on graphs and dendrites. For example, positive topological entropy and the existence of a homoclinic trajectory are independent and neither of them implies the existence of any horseshoe in the case of dendrites. Unfortunately, there is still an open problem, and we formulate it at the end of the paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alsedà, Ll., Llibre, J. and Misiurewicz, M.. Combinatorial Dynamics and Entropy in Dimension One (Advanced Series in Nonlinear Dynamics, 5). World Scientific, River Edge, NJ, 1993.CrossRefGoogle Scholar
[2]Block, L.. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576580.CrossRefGoogle Scholar
[3]Block, L. and Coppel, W.. Dynamics in One Dimension (Lecture Notes in Mathematics, 1513). Springer, Berlin, 1992.CrossRefGoogle Scholar
[4]Block, L., Guckenheimer, J., Misiurewicz, M. and Young, L. S.. Periodic Points and Topological Entropy of One-Dimensional Maps (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980, pp. 1834.Google Scholar
[5]Blokh, A. and Teoh, E.. How little is little enough? Discrete Contin. Dyn. Syst. 9 (2003), 969978.CrossRefGoogle Scholar
[6]Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
[7]Dinaburg, E. I.. A correlation between topological entropy and metric entropy. Dokl. Akad. Nauk. SSSR 190 (1970), 1922.Google Scholar
[8]Efremova, L. S. and Makhrova, E. N.. On Homoclinic Points of Piecewise Monotone Mappings of Dendrites (Progress in Nonlinear Science, 1 (Nizhny Novgorod, 2001)). Institute of Applied Physics of the Russian Academy of Sciences, Nizhniĭ Novgorod, 2002, pp. 225228.Google Scholar
[9]Gehman, H. M.. Concerning the subsets of a plane continuous curve. Ann. of Math. (2) 27 (1925), 2946.CrossRefGoogle Scholar
[10]Hahn, F. and Katznelson, Y.. On the entropy of uniquely ergodic transformations. Trans. Amer. Math. Soc. 126 (1967), 335360.CrossRefGoogle Scholar
[11]Llibre, J. and Misiurewicz, M.. Horseshoes, entropy and periods for graph maps. Topology 32(3) (1993), 649664.CrossRefGoogle Scholar
[12]Misiurewicz, M.. Horseshoes for mappings of an interval. Bull. Acad. Pol. Sci., Sér. Sci. Math. 27(2) (1979), 167169.Google Scholar
[13]Nadler, S. B.. Continuum Theory: An introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, New York, NY, 1992.Google Scholar
[14]Sharkovskiĭ, A. N., Kolyada, S. F., Sivak, A. G. and Fedorenko, V. V.. Dynamics of One-Dimensional Maps. Kluwer Academic, Dordrecht, 1997.CrossRefGoogle Scholar