Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T15:21:01.592Z Has data issue: false hasContentIssue false

Dynamics on the graph of the torus parametrization

Published online by Cambridge University Press:  19 September 2016

GERHARD KELLER
Affiliation:
Department Mathematik, Universität Erlangen-Nürnberg, Germany email [email protected]
CHRISTOPH RICHARD
Affiliation:
Department Mathematik, Universität Erlangen-Nürnberg, Germany email [email protected]

Abstract

Model sets are projections of certain lattice subsets. It was realized by Moody [Uniform distribution in model sets. Canad. Math. Bull. 45(1) (2002), 123–130] that dynamical properties of such a set are induced from the torus associated with the lattice. We follow and extend this approach by studying dynamics on the graph of the map that associates lattice subsets to points of the torus and then we transfer the results to their projections. This not only leads to transparent proofs of known results on model sets, but we also obtain new results on so-called weak model sets. In particular, we prove pure point dynamical spectrum for the hull of a weak model set of maximal density together with the push forward of the torus Haar measure under the torus parametrization map, and we derive a formula for its pattern frequencies.

Type
Original Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aujogue, J.-B., Barge, M., Kellendonk, J. and Lenz, D.. Equicontinuous factors, proximality and Ellis semigroup for Delone sets. Mathematics of Aperiodic Order. Springer, Basel, 2015, pp. 137194.Google Scholar
Baake, M. and Grimm, U.. Aperiodic Order. Vol. 1: A Mathematical Invitation (Encyclopedia of Mathematics and its Applications, 149) . Cambridge University Press, Cambridge, 2013.CrossRefGoogle Scholar
Baake, M., Hermisson, J. and Pleasants, P. A. B.. The torus parametrization of quasiperiodic LI-classes. J. Phys. A: Math. Gen. 30 (1997), 30293056.Google Scholar
Baake, M. and Huck, C.. Ergodic properties of visible lattice points. Proc. Steklov Inst. Math. 288 (2015), 165188.Google Scholar
Baake, M., Huck, C. and Strungaru, N.. On weak model sets of extremal density. Indag. Math., in press. Preprint, 2015, arXiv:1512.07129v2.Google Scholar
Baake, M. and Lenz, D.. Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys. 24(6) (2004), 18671893.Google Scholar
Baake, M., Lenz, D. and Moody, R. V.. Characterization of model sets by dynamical systems. Ergod. Th. & Dynam. Sys. 27 (2007), 341382.Google Scholar
Baake, M. and Moody, R. V.. Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. 573 (2004), 6194.Google Scholar
Baake, M., Moody, R. V. and Pleasants, P. A. B.. Diffraction from visible lattice points and kth power free integers. Discrete Math. 221 (2000), 342.Google Scholar
Baake, M., Moody, R. V. and Schlottmann, M.. Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces. J. Phys. A: Math. Gen. 31 (1998), 57555765.Google Scholar
Bartnicka, A., Kasjan, S., Kułaga-Przymus, J. and Lemańczyk, M.. $\mathscr{B}$ -free sets and dynamics. Trans. Amer. Math. Soc. in press. Preprint, 2015, arXiv:1509.08010.Google Scholar
Björklund, M., Hartnick, T. and Pogorzelski, F.. Aperiodic order and spherical diffraction. Preprint, 2016, arXiv:1602.08928.Google Scholar
Bogachev, V. I.. Measure Theory. Vol. 1. Springer, New York, 2006.Google Scholar
Bogenschütz, T.. Entropy, pressure and a variational principle for random dynamical systems. Random Comput. Dyn. 1(1) 99116.Google Scholar
Brémont, J.. Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. Paris 346(3–4) (2008), 199201.Google Scholar
Bufetov, A. I.. Pressure and equilibrium measures for actions of amenable groups on the space of configurations. Sb. Math. 202(3) (2011), 341350.CrossRefGoogle Scholar
Cellarosi, F. and Sinai, Y. G.. Ergodic properties of square-free numbers. J. Eur. Math. Soc. 15 (2013), 13431374.Google Scholar
Danilenko, A. I. and Lemańczyk, M.. Odometer actions of the Heisenberg group. J. Anal. Math. 128 (2016), 107157.CrossRefGoogle Scholar
El Abdalaoui, E. H., Kułaga-Przymus, J., Lemańczyk, M. and de la Rue, T.. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete Cont. Dyn. Syst., to appear. Preprint, 2014,arXiv:1410.1673v2.Google Scholar
El Abdalaoui, E. H., Lemańczyk, M. and de la Rue, T.. A dynamical point of view on the set of ℬ-free integers. Int. Math. Res. Not. IMRN 16 (2015), 72587286.Google Scholar
Forrest, A., Hunton, J. and Kellendonk, J.. Topological invariants for projection method patterns. Mem. Amer. Math. Soc. 159(758) 2002.Google Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math. Syst. Theory 1(1) (1967), 149.Google Scholar
Herman, M. R.. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), 453502.Google Scholar
Hermisson, J., Richard, C. and Baake, M.. A guide to the symmetry structure of quasiperiodic tiling classes. J. Physique I 7(8) (1997), 10031018.Google Scholar
Huang, W. and Ye, X.. Generic eigenvalues, generic factors and weak disjointness. Dynamical Systems and Group Actions. Vol. 567. Eds. Bowen, L., Grigorchuk, R. and Vorobets, Y.. American Mathematical Society, Providence, RI, 2012, pp. 119142.Google Scholar
Huck, C. and Richard, C.. On pattern entropy of weak model sets. Discrete Comput. Geom. 54 (2015), 741757.Google Scholar
Jäger, T.. Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity 16(4) (2003), 12391255.Google Scholar
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. 15(1) (2006), 197224.CrossRefGoogle Scholar
Kallenberg, O.. Foundations of Modern Probability (Probability and its Applications) , 2nd edn. Springer, New York, 2001.Google Scholar
Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.CrossRefGoogle Scholar
Keller, G.. A note on strange nonchaotic attractors. Fund. Math. 151 (1996), 139148.Google Scholar
Keller, G.. Equilibrium States in Ergodic Theory. Cambridge University Press, Cambridge, 1998.Google Scholar
Kharazishvili, A.. Topics in Measure Theory and Real Analysis (Atlantis Studies in Mathematics, 2) . Atlantis Press/World Scientific, Amsterdam–Paris, 2009.Google Scholar
Kułaga-Przymus, J., Lemańczyk, M. and Weiss, B.. On invariant measures for ℬ-free systems. Proc. Lond. Math. Soc. 110(6) (2015), 14351474.CrossRefGoogle Scholar
Lee, J.-Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5) (2002), 10031018.Google Scholar
Lenz, D. and Richard, C.. Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z. 256 (2007), 347378.CrossRefGoogle Scholar
Lindenstrauss, E.. Pointwise theorems for amenable groups. Invent. Math. 146(2) (2001), 259295.Google Scholar
Meyer, Y.. Nombres de Pisot, Nombres de Salem et Analyse Harmonique (Lecture Notes in Mathematics, 117) . Springer, New York, 1970.Google Scholar
Meyer, Y.. Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam, 1972.Google Scholar
Misiurewicz, M.. A short proof of the variational principle for a ℤ+ N action on a compact space. Bull. Acad. Polon. Sc., Série des Sc. Math., Astr. et Phys. XXIV(12) (1976), 10691075.Google Scholar
Moody, R. V.. Meyer sets and their duals. The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995) (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 489) . Ed. Moody, R. V.. Kluwer Academic Publishers, Dordrecht, pp. 403441.Google Scholar
Moody, R. V.. Model sets: a survey. From Quasicrystals to More Complex Systems (EDP Sciences) . Eds. Axel, F., Dénoyer, F. and Gazeau, J.. Les Ulis and Springer, Berlin, 2000, pp. 145166.Google Scholar
Moody, R. V.. Uniform distribution in model sets. Canad. Math. Bull. 45(1) (2002), 123130.Google Scholar
Müller, P. and Richard, C.. Ergodic properties of randomly coloured point sets. Canad. J. Math. 65 (2013), 349402.Google Scholar
Peckner, R.. Uniqueness of the measure of maximal entropy for the squarefree flow. Israel J. Math. 210 (2015), 335357.Google Scholar
Reiter, H. and Stegeman, J. D.. Classical Harmonic Analysis and Locally Compact Groups (London Mathematical Society Monographs. New Series, 22) , 2nd edn. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
Richard, C. and Strungaru, N.. Pure point diffraction and Poisson summation. Preprint, 2015, arXiv:1512.00912.Google Scholar
Robinson , E. A. Jr. The dynamical properties of Penrose tilings. Trans. Amer. Math. Soc. 348(11) (1996), 44474464.Google Scholar
Robinson , E. A. Jr. Symbolic dynamics and tilings of ℝ d . Symbolic Dynamics and Its Applications (Proceedings of Symposia in Applied Mathematics, 60) . American Mathematical Society, Providence, RI, 2004, pp. 81119.Google Scholar
Robinson , E. A. Jr. A Halmos–von Neumann theorem for model sets, and almost automorphic dynamical systems. Dynamics, Ergodic Theory, and Geometry (Mathematical Sciences Research Institute Publications, 54) . Cambridge University Press, Cambridge, 2007, pp. 243272.Google Scholar
Sarnak, P.. Three lectures on the Möbius function: randomness and dynamics. Available at www.math.ias.edu/files/wam/2011/..., 2011.Google Scholar
Schlottmann, M.. Geometrische Eigenschaften quasiperiodischer Strukturen. Dissertation, Universität Tübingen, 1993.Google Scholar
Schlottmann, M.. Cut-and-project sets in locally compact abelian groups. Quasicrystals and Discrete Geometry (Toronto, ON, 1995) (Fields Institute Monographs, 10) . American Mathematical Society, Providence, RI, 1998, pp. 247264.Google Scholar
Schlottmann, M.. Generalized model sets and dynamical systems. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13) . American Mathematical Society, Providence, RI, 2000, pp. 143159.Google Scholar
Schreiber, J.-P.. Sur la notion de modèles dans les groupes abéliens localement compacts. C. R. Acad. Sci. Paris Sér. A–B 272 (1971), A30A32.Google Scholar
Schreiber, J.-P.. Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts. Bull. Soc. Math. France 101 (1973), 297332.Google Scholar
Stark, J.. Transitive sets for quasi-periodically forced monotone maps. Dyn. Syst. 18 (2003), 351364.Google Scholar
Strungaru, N.. Private communication at the Mini-Workshop. Dynamical versus Diffraction Spectra in the Theory of Quasicrystals. Oberwolfach, 2014.Google Scholar
Strungaru, N.. Almost periodic measures and Meyer sets. Preprint, 2015, arXiv:1501.00945v1.Google Scholar
Sturman, R. and Stark, J.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13 (2000), 113143.Google Scholar
Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1982.Google Scholar
Ward, T. and Zhang, Q.. The Abramov–Rokhlin entropy addition formula for amenable group actions. Monatsh. Math. 44(0) (1992), 011.Google Scholar
Wolf, J. A.. Harmonic Analysis on Commutative Spaces (Mathematical Surveys and Monographs, 142) . American Mathematical Society, Providence, RI, 2007.Google Scholar