Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T20:00:40.517Z Has data issue: false hasContentIssue false

Distributional chaos in multifractal analysis, recurrence and transitivity

Published online by Cambridge University Press:  27 August 2019

AN CHEN
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai200433, PR China email [email protected], [email protected]
XUETING TIAN
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai200433, PR China email [email protected], [email protected]

Abstract

There is much research on the dynamical complexity on irregular sets and level sets of ergodic average from the perspective of density in base space, the Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and topological pressure), etc. However, this is not the case from the viewpoint of chaos. There are many results on the relationship of positive topological entropy and various chaos. However, positive topological entropy does not imply a strong version of chaos, called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In this paper, we will show that, for dynamical systems with specification properties, there exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we prove that several recurrent level sets of points with different recurrent frequency have uncountable DC1-scrambled subsets. The major argument in proving the above results is that there exists uncountable DC1-scrambled subsets in saturated sets.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, E. and Kolyada, S.. Li–Yorke sensitivity. Nonlinearity 16 (2003), 14211433.CrossRefGoogle Scholar
Ashwin, P., Aston, P. J. and Nicol, M.. On the unfolding of a blowout bifurcation. Phys. D 111(1–4) (1998), 8195.Google Scholar
Ashwin, P. and Field, M.. Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal. 148(2) (1999), 107143.CrossRefGoogle Scholar
Barreira, L.. Thermodynamic Formalism and Applications to Dimension Theory. Springer Science & Business Media, 2011.CrossRefGoogle Scholar
Barreira, L. and Doutor, P.. Almost additive multi-fractal analysis. J. Math. Pures Appl. (9) 92 (2009), 117.CrossRefGoogle Scholar
Barreira, L. and Saussol, B.. Variational principles and mixed multifractal spectra. Trans. Amer. Math. Soc. 353(10) (2001), 39193944.CrossRefGoogle Scholar
Barreira, L. and Schmeling, J.. Sets of non-typical points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 2970.CrossRefGoogle Scholar
Blanchard, F., Glasner, E., Kolyada, S. and Maass, A.. On Li–Yorke pairs. J. Reine Angew. Math. 547 (2002), 5168.Google Scholar
Blanchard, F., Huang, W. and Snoha, L.. Topological size of scrambled sets. Colloq. Math. 110 (2008), 293361.CrossRefGoogle Scholar
Bowen, R.. Periodic points and measures for axiom a diffeomorphisms. Trans. Amer. Math. Soc. 154 (1971), 377397.Google Scholar
Bruckner, A. M. and Hu, T.. On scrambled sets for chaotic functions. Trans. Amer. Math. Soc. 301 (1987), 289297.CrossRefGoogle Scholar
Buzzi, J.. Specification on the interval. Trans. Amer. Math. Soc. 349(7) (1997), 27372754.CrossRefGoogle Scholar
Chen, E., Kupper, T. and Shu, L.. Topological entropy for divergence points. Ergod. Th. & Dynam. Sys. 25(4) (2005), 11731208.Google Scholar
Climenhaga, V.. Topological pressure of simultaneous level sets. Nonlinearity 26(1) (2013), 241268.CrossRefGoogle Scholar
Climenhaga, V., Thompson, D. and Yamamoto, K.. Large deviations for systems with non-uniform structure. Trans. Amer. Math. Soc. 369(6) (2017), 41674192.CrossRefGoogle Scholar
Dateyama, M.. Invariant measures for homeomorphisms with almost weak specification. Tokyo J. Math. 04 (1981), 9396.Google Scholar
Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527) . Springer, Berlin, 1976, p. 177.CrossRefGoogle Scholar
Devaney, R.. A First Course in Chaotic Dynamical Systems. Perseus Books, 1992.Google Scholar
Dong, Y., Oprocha, P. and Tian, X.. On the irregular points for systems with the shadowing property. Ergod. Th. & Dynam. Sys. 38(6) (2018), 21082131.CrossRefGoogle Scholar
Dong, Y. and Tian, X.. Different statistical future of dynamical orbits over expanding or hyperbolic systems (I): empty syndetic center. Preprint, 2017, arXiv:1701.01910v2.Google Scholar
Dong, Y. and Tian, X.. Different statistical future of dynamical orbits over expanding or hyperbolic systems (II): nonempty syndetic center. Preprint, 2018, arXiv:1803.06796.Google Scholar
Downarowicz, T.. Positive topological entropy implies chaos DC2. Proc. Amer. Math. Soc. 142(1) (2012), 137149.CrossRefGoogle Scholar
Eizenberg, A., Kifer, Y. and Weiss, B.. Large deviations for Z d -actions. Commun. Math. Phys. 164(3) (1994), 433454.CrossRefGoogle Scholar
Fan, A., Feng, D. and Wu, J.. Recurrence, dimensions and entropy. J. Lond. Math. Soc. (2) 64 (2001), 229244.CrossRefGoogle Scholar
Feng, D. and Huang, W.. Lyapunov spectrum of asymptotically sub-additive potentials. Commun. Math. Phys. 297(1) (2010), 143.CrossRefGoogle Scholar
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981.CrossRefGoogle Scholar
He, W., Yin, J. and Zhou, Z.. On quasi-weakly almost periodic points. Sci. China Math. 56(3) (2013), 597606.CrossRefGoogle Scholar
Huang, Y., Tian, X. and Wang, X.. Transitively-saturated property, Banach recurrence and Lyapunov regularity. Nonlinearity 32(7) (2019), 27212757.CrossRefGoogle Scholar
Huang, Y. and Wang, X.. Recurrence of transitive points in dynamical systems with the specification property. Acta Math. Sin. (Engl. Ser.) (2018), 18791891.Google Scholar
Jakobson, M. V.. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81(1) (1981), 3988.CrossRefGoogle Scholar
Kan, I.. A chaotic function possessing a scrambled set with positive Lebesgue measure. Proc. Amer. Math. Soc. 92 (1984), 4549.CrossRefGoogle Scholar
Kiriki, S. and Soma, T.. Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. 306 (2017), 524588.CrossRefGoogle Scholar
Kościelniak, P.. On genericity of shadowing and periodic shadowing property. J. Math. Anal. Appl. 310 (2005), 188196.CrossRefGoogle Scholar
Kościelniak, P.. On the genericity of chaos. Topol. Appl. 154 (2007), 19511955.CrossRefGoogle Scholar
Koscielniak, P., Mazur, M., Oprocha, P. and Pilarczyk, P.. Shadowing is generic-a continuous map case. Discrete Contin. Dyn. Syst. 34(9) (2014), 35913609.CrossRefGoogle Scholar
Kwietniak, D., Oprocha, P. and Rams, M.. On entropy of dynamical systems with almost specification. Israel J. Math. 213(1) (2016), 475503.CrossRefGoogle Scholar
Li, T. Y. and Yorke, J. A.. Period three implies chaos. Amer. Math. Monthly 82(10) (1975), 985992.CrossRefGoogle Scholar
Liang, C., Liao, G., Sun, W. and Tian, X.. Variational equalities of entropy in nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 369(5) (2017), 31273156.CrossRefGoogle Scholar
Liang, C., Sun, W. and Tian, X.. Ergodic properties of invariant measures for C 1+𝛼 non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys. 33(2) (2013), 560584.CrossRefGoogle Scholar
Nemytskii, V. and Stepanov, V.. Qualitative Theory of Differential Equations, Vol. 2083. Princeton University Press, 2015 (Originally 1960).Google Scholar
Oprocha, P.. Specification properties and dense distributional chaos. Discrete Contin. Dyn. Syst. 17(4) (2007), 821833.CrossRefGoogle Scholar
Oprocha, P.. Distributional chaos revisited. Trans. Amer. Math. Soc. 361 (2009), 49014925.CrossRefGoogle Scholar
Oprocha, P. and S̆tefánková, M.. Specification property and distributional chaos almost everywhere. Proc. Amer. Math. Soc. 136(11) (2008), 39313940.CrossRefGoogle Scholar
Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc. (N.S.) 58 (1952), 116136.CrossRefGoogle Scholar
Parry, W.. On the 𝛽-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11(3–4) (1960), 401416.CrossRefGoogle Scholar
Pesin, Y. B.. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago, IL, 1997.CrossRefGoogle Scholar
Pesin, Y. B. and Pitskel’, B.. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18 (1984), 307318.CrossRefGoogle Scholar
Pfister, C. E. and Sullivan, W. G.. Large deviations estimates for dynamical systems without the specification property. Application to the 𝛽-shifts. Nonlinearity 18(1) (2005), 237261.CrossRefGoogle Scholar
Pfister, C. E. and Sullivan, W. G.. On the topological entropy of saturated sets. Ergod. Th. & Dynam. Sys. 27(3) (2007), 929956.CrossRefGoogle Scholar
Pikula, R.. On some notions of chaos in dimension zero. Colloq. Math. 107 (2007), 167177.CrossRefGoogle Scholar
Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8(3–4) (1979), 477493.CrossRefGoogle Scholar
Ruelle, D.. Historic behaviour in smooth dynamical systems. Global Analysis of Dynamical Systems. CRC Press, Boca Raton, FL, 2001, pp. 6366.Google Scholar
Schweizer, B. and Smítal, J.. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc. 344(2) (1994), 737754.Google Scholar
Sigmund, K.. On dynamical systems with the specification property. Trans. Amer. Math. Soc. 190 (1974), 285299.CrossRefGoogle Scholar
Sklar, A. and Smítal, J.. Distributional chaos on compact metric spaces via specification properties. J. Math. Anal. Appl. 241(2) (2000), 181188.Google Scholar
Smítal, J.. Symbolic dynamics for 𝛽-shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17(3) (2000), 675694.Google Scholar
Smítal, J. and S̆tefánková, M.. Distributional chaos for triangular maps. Chaos Solitons Fractals 21(5) 11251128.CrossRefGoogle Scholar
Takens, F.. Orbits with historic behaviour, or non-existence of averages. Nonlinearity 21 (2008), 3336.CrossRefGoogle Scholar
Takens, F. and Verbitski, E.. On the variational principle for the topological entropy of certain non-compact sets. Ergod. Th. & Dynam. Sys. 23(1) (2003), 317348.CrossRefGoogle Scholar
Thompson, D.. The irregular set for maps with the specification property has full topological pressure. Dyn. Syst. 25(1) (2008), 2551.CrossRefGoogle Scholar
Thompson, D.. A variational principle for topological pressure for certain non-compact sets. J. Lond. Math. Soc. (2) 80(3) (2009), 585602.CrossRefGoogle Scholar
Thompson, D.. Irregular sets, the 𝛽-transformation and the almost specification property. Trans. Amer. Math. Soc. 364(10) (2012), 53955414.Google Scholar
Tian, X.. Different asymptotic behaviour versus same dynamicl complexity: recurrence & (ir)regularity. Adv. Math. 288 (2016), 464526.CrossRefGoogle Scholar
Tian, X. and Varandas, P.. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete Contin. Dyn. Syst. A 37(10) (2017), 54075431.Google Scholar
Yamamoto, K.. On the weaker forms of the specification property and their applications. Proc. Amer. Math. Soc. 137(11) (2009), 38073814.CrossRefGoogle Scholar
Yan, Q., Yin, J. and Wang, T.. A note on quasi-weakly almost periodic point. Acta Math. Sin. (Engl. Ser.) 31(4) (2015), 637646.CrossRefGoogle Scholar
Zhou, Z. and Feng, L.. Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: a brief survey of recent results. Nonlinearity 17(2) (2004), 493502.CrossRefGoogle Scholar
Zhou, Z. and He, W.. Level of the orbit’s topological structure and topological semi-conjugacy. Sci. China Ser. A 38(8) (1995), 897907.Google Scholar