Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:35:06.738Z Has data issue: false hasContentIssue false

D-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets

Published online by Cambridge University Press:  19 September 2008

Xiangdong Ye
Affiliation:
Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720, USA

Abstract

Let X be a compact Hausdorff space, fC0(X, X) and AX a minimal set of f. We first introduce a new topological invariant, the D-function of a minimal set, by the investigation of the decomposition of the minimal set A under the action of fn, nN. Then important properties about the invariant and the existence of minimal set with a given D-function in some subshift of finite type are discussed. Finally Sharkovskii's theorem is generalized to minimal sets of continuous mappings from the interval into itself.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[ALM]Alseda, L., Llibre, J. & Misiurewicz, M.. Periodic orbits of maps of Y. Trans. Amer. Math. Soc. 313 (1989), 475538.Google Scholar
[Ba1]Baldwin, S.. Generalization of a theorem of Sarkovskii on orbits of continuous real-valued functions. Discrete Math. 67 (1987), 111127.CrossRefGoogle Scholar
[Ba2]Baldwin, S.. An extension of Sarkovskii's theorem to n-od. Ergod. Th. & Dynam. Sys. 11 (1991), 249271.CrossRefGoogle Scholar
[Be]Bernardt, C.. The ordering on permutations induced by continuous maps of the real line. Ergod. Th. & Dynam. Sys. 7 (1987), 155160.CrossRefGoogle Scholar
[B1]Block, L.. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 570580.CrossRefGoogle Scholar
[BGMY]Block, L., Guckenheimer, J., Misiurewicz, M. & Young, L. S.. Periodic points and topological entropy of one dimensional maps. Springer Lecture Notes in Mathematics 819 (Springer: Berlin) pp 1834.Google Scholar
[CH]Coven, E. M. & Hedlund, G. A.. for maps of the interval. Proc. Amer. Math. Soc. 79 (1980), 316318.Google Scholar
[E]Eberlein, E.. Toeplitz-Folgen und Gruppentranslation. Arch. Math. 22 (1971), 291301.CrossRefGoogle Scholar
[Go1]Gottschalk, W. H.. Powers of homeomorphisms with almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 222227.CrossRefGoogle Scholar
[Go2]Gottschalk, W. H.. Orbit-closure decompositions and almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 915919.CrossRefGoogle Scholar
[Go3]Gottschalk, W. H.. Substitution minimal sets. Trans. Amer. Math. Soc. 109 (1963), 467491.CrossRefGoogle Scholar
[GH]Gottschalk, W. H. & Hedlund, G. A.. A characterization of the Morse minimal set. Proc. Amer. Math. Soc. 15 (1964) 7074.CrossRefGoogle Scholar
[He]Hedlund, G. A.. Sturmian minimal sets. Amer. J. Math. 66 (1944), 605620.CrossRefGoogle Scholar
[HY]Hocking, J. G. & Young, G. S.. Topology. (Addison-Wesley: Reading, MA, 1964).Google Scholar
[K]Kloeden, P. E.. On Sarkovskii's cycle coexistence ordering. Bull. Austral. Math. Soc. 20 (1979), 171177.CrossRefGoogle Scholar
[LMPY]Li, T.-Y., Misiurewicz, M., Pianigiani, G. & Yorke, J.. No division implies chaos. Trans. Amer. Math. Soc. 273 (1982), 191199.CrossRefGoogle Scholar
[M]Matsuoka, T., Braids of periodic points and a 2-dimensional analogue of Sharkovskii's ordering. Dynamical Systems and Nonlinear Oscillations. (World Scientific: Singapore, 1986) pp 5872.Google Scholar
[Ni]Nitecki, Z.. Topological Dynamics on the Interval. Progress in Mathematics Vol. 21 (Birkhauser: Boston, 1982) pp 173.Google Scholar
[Sc]Schirmer, H.. A topologist's view of Sharkovskii's theorem. Houston J. Math. 11 (1985) 385395.Google Scholar
[Sh]Sharkovskii, A. N.. Coexistence of cycles of a continuous map of a line into itself. Ukrain. Math. J. 16 (1964), 6171.Google Scholar
[Sm]Smital, J., Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269282.CrossRefGoogle Scholar
[St]Stefan, P.. A theorem of Sharkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. Math. Phys. 54 (1977), 237247.CrossRefGoogle Scholar
[Wa]Walters, P.. An Introduction to Ergodic Theory (Springer Verlag: New York, 1982).CrossRefGoogle Scholar
[Xi]Xiong, J. C.. Set of almost Periodic points of a continuous self map of an interval. Acta Math. Sinica (new series) 2 (1986), 7377.Google Scholar
[Ye]Ye, X. D.. D-function of a minimal set and coexistence of almost periodic points of interval mapping. Sov. Math. Dokl. 40 (1990), 607609.Google Scholar