Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:06:34.274Z Has data issue: false hasContentIssue false

d-actions with prescribed topological and ergodic properties

Published online by Cambridge University Press:  12 April 2011

YURI LIMA*
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brasil (email: [email protected])

Abstract

We extend constructions of Hahn and Katznelson [On the entropy of uniquely ergodic transformations. Trans. Amer. Math. Soc.126 (1967), 335–360] and Pavlov [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28 (2008), 1291–1322] to ℤd-actions on symbolic dynamical spaces with prescribed topological and ergodic properties. More specifically, we describe a method to build ℤd-actions which are (totally) minimal, (totally) strictly ergodic and have positive topological entropy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergelson, V.. Ergodic Ramsey theory—an update. Ergodic Theory of ℤd-actions (London Mathematical Society Lecture Note Series, 228). Eds. Pollicott, M. and Schmidt, K.. Cambridge University Press, Cambridge, 1996, pp. 161.Google Scholar
[2]Bergelson, V. and Leibman, A.. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc. 9 (1996), 725753.CrossRefGoogle Scholar
[3]Bourgain, J.. Pointwise ergodic theorems for arithmetic sets. Publ. Math. Inst. Hautes Études Sci. 69 (1989), 545.CrossRefGoogle Scholar
[4]Furstenberg, H.. Strict ergodicity and transformations of the torus. Amer. J. Math. 83 (1961), 573601.CrossRefGoogle Scholar
[5]Hahn, F. and Katznelson, Y.. On the entropy of uniquely ergodic transformations. Trans. Amer. Math. Soc. 126 (1967), 335360.CrossRefGoogle Scholar
[6]Katok, A.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.CrossRefGoogle Scholar
[7]Pavlov, R.. Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys. 28 (2008), 12911322.CrossRefGoogle Scholar
[8]Petersen, K.. Ergodic Theory. Cambridge University Press, Cambridge, 1983.CrossRefGoogle Scholar
[9]Weiss, B.. Strictly ergodic models for dynamical systems. Bull. Amer. Math. Soc. 13(2) (1985), 143146.CrossRefGoogle Scholar
[10]Wiener, N.. The ergodic theorem. Duke Math. J. 5(1) (1939), 118.CrossRefGoogle Scholar