Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T00:32:34.840Z Has data issue: false hasContentIssue false

Croissance des boules et des géodésiques fermées dans les nilvariétés

Published online by Cambridge University Press:  19 September 2008

Pierre Pansu
Affiliation:
Centre de Mathematiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If (M, g) is a riemannian nilmanifold, the homothetic metrics εg˜ on the universal cover M converge in the sense of Gromov for small ε. In this convergence the volume of balls and the number of closed geodesies go to a limit, and precise asymptotic estimates are given for these numbers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

BIBLIOGRAPHIE

[1]Bass, H.. The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. (3) 25 (1972), 603614.CrossRefGoogle Scholar
[2]Efremovič, V.. The proximity geometry of Riemannian manifolds. UspehiMat. Nauk 8 (1953), 189.Google Scholar
[3]Federer, H. & Fleming, W. H.. Normal and integral currents. Ann. of Math. 72 (1960), 458520.CrossRefGoogle Scholar
[4]Gaveau, B.. Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 96153.Google Scholar
[5]Gaveau, B.. Systèmes hamiltoniens associés á certains operateurs hypoelliptiques. Bull. Sci. Math. (1978), 203229.Google Scholar
[6]Goodman, R.. Nilpotent Lie Groups, structure and applications to Analysis. Lecture Notes 562. Springer-Verlag: Berlin, 1976.Google Scholar
[7]Gromov, M.. Groups of polynomial growth and expanding maps. Publ. Math, de l'I.H.E.S. 53 (1981), 5378.CrossRefGoogle Scholar
[8]Gromov, M.. Structures métriques pour les variétés riemanniennes, notes de cours rédigées par J. Lafontaine et Pansu, P.. CEDIC: Paris, 1981.Google Scholar
[9]Gromov, M.. Filling riemannian manifolds. J. Diff. Geom. 18 (1983), 1147.Google Scholar
[10]Kaplan, A.. Riemannian nilmanifolds attached to Clifford Modules. Geometriae Dedicata 11 (1981), 127136.Google Scholar
[11]Koranyi, A.. Geometric properties of Heisenberg type groups. Preprint. (Washington Univ. at St Louis.)Google Scholar
[12]Malcev, A.. On a class of homogeneous spaces. Isvestiya 13 (1949), 932. (Amer. Math. Soc. Transl. 39 (1951).)Google Scholar
[13]Margulis, G. A.. Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Funkc. Analiz i Prilozen. 3 (1969) N°4, 8990.Google Scholar
[14]Pansu, P.. Une inégalité isopérimétrique sur le groupe d'Heisenberg. C.R. Acad. Sci. Paris 295 (1982), 127131.Google Scholar
[15]Süssmann, H. S.. Orbits of families of vectorfields and integrability of distributions. Trans. A.M.S. 180 (1973), 171188.Google Scholar
[16]Švarč, A.. A volume invariant of coverings, Doklady Akad. Nauk SSSR 105 (1955), 3234.Google Scholar
[17]Tits, J.. Groupes à croissance polynomiale. Séminaire Bourbaki, exposé N° 572.Google Scholar
[18]Wolf, J.. Growth of finitely generated solvable groups and curvature of riemannian manifolds. J. Diff. Geom. 2 (1968), 421446.Google Scholar
[19]Encyclopedic Dictionary of Mathematics. Article N° 240: Lattice point problems. Math Soc. of Japan - MIT Press: Cambridge, U.S.A.Google Scholar