Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T02:06:48.722Z Has data issue: false hasContentIssue false

A Cr unimodal map with an arbitrary fast growth of the number of periodic points

Published online by Cambridge University Press:  19 April 2011

V. KALOSHIN
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA (email: [email protected])
O. S. KOZLOVSKI
Affiliation:
University of Warwick, Coventry, CV4 7AL, England (email: [email protected])

Abstract

In this paper we present a surprising example of a Cr unimodal map of an interval f:II whose number of periodic points Pn(f)=∣{xI:fnx=x}∣ grows faster than any ahead given sequence along a subsequence nk=3k. This example also shows that ‘non-flatness’ of critical points is necessary for the Martens–de Melo–van Strien theorem [M. Martens, W. de Melo and S. van Strien. Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math.168(3–4) (1992), 273–318] to hold.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AM]Artin, M. and Mazur, B.. On periodic orbits. Ann. of Math. (2) 81 (1965), 8299.CrossRefGoogle Scholar
[E]Epstein, H.. Fixed points of composition operators. Proceedings of NATO Advanced Study Institute on Nonlinear Evolution, Italy. Plenum, New York, 1988, pp. 71100.Google Scholar
[GST]Gonchenko, S., Shilnikov, L. and Turaev, D.. On models with non-rough Poincaré homoclinic curves. Phys. D 62 (1993), 114.CrossRefGoogle Scholar
[K1]Kaloshin, V.. An extension of the Artin–Mazur theorem. Ann. of Math. (2) 150 (1999), 729741.CrossRefGoogle Scholar
[K2]Kaloshin, V.. Generic diffeomorphisms with superexponential growth of the number of periodic orbits. Comm. Math. Phys. 211(1) (2000), 253271.CrossRefGoogle Scholar
[K3]Kaloshin, V.. Growth of the number of periodic points. Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Eds. Ilyashenko, Y. and Rousseau, C.. Kluwer, Dordrecht, 2004, pp. 355385.CrossRefGoogle Scholar
[KS]Kaloshin, V. and Saprykina, M.. Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits. Discrete Contin. Dyn. Syst. 15(2) (2006), 611640.CrossRefGoogle Scholar
[K4]Kozlovski, O. S.. The dynamics of intersections of analytical manifolds. Dokl. Akad. Nauk 323(5) (1992), 823825 (Engl. transl. Russian Acad. Sci. Dokl. Math. 45(2) (1992), 425–427).Google Scholar
[L]Lanford III, O. E.. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. (N.S.) 6(3) (1982), 427434.CrossRefGoogle Scholar
[Ma]Martens, M.. Periodic points of renormalization. Ann. of Math. (2) 147(3) (1998), 435484.CrossRefGoogle Scholar
[MMS]Martens, M., de Melo, W. and van Strien, S.. Julia–Fatou–Sullivan theory for real one-dimensional dynamics. Acta Math. 168(3–4) (1992), 273318.CrossRefGoogle Scholar
[S]Sullivan, D.. Bounds, quadratic differentials, and renormalization conjectures. American Mathematical Society Centennial Publications, vol. II (Providence, RI, 1988). American Mathematical Society, Providence, RI, 1992, pp. 417466.Google Scholar