Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:17:18.303Z Has data issue: false hasContentIssue false

A counterexample to the HK-conjecture that is principal

Published online by Cambridge University Press:  02 May 2022

ROBIN J. DEELEY*
Affiliation:
Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, CO 80309-0395, USA

Abstract

Scarparo has constructed counterexamples to Matui’s HK-conjecture. These counterexamples and other known counterexamples are essentially principal but not principal. In the present paper, a counterexample to the HK-conjecture that is principal is given. Like Scarparo’s original counterexample, our counterexample is the transformation groupoid associated to a particular odometer. However, the relevant group is the fundamental group of a flat manifold (and hence is torsion-free) and the associated odometer action is free. The examples discussed here do satisfy the rational version of the HK-conjecture.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bönicke, C., Dell’Aiera, C., Gabe, J. and Willett, R.. Dynamic asymptotic dimension and Matui’s HK conjecture. Preprint, 2021, arXiv:2104.05885.Google Scholar
Brown, K. S.. Cohomology of Groups (Graduate Texts in Mathematics, 87). Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.Google Scholar
Charlap, L. S.. Bieberbach Groups and Flat Manifolds (Universitext). Springer-Verlag, New York, 1986.10.1007/978-1-4613-8687-2CrossRefGoogle Scholar
Cortez, M. I. and Petite, S.. $G$ -odometers and their almost one-to-one extensions. J. Lond. Math. Soc. (2) 78(1) (2008), 120.10.1112/jlms/jdn002CrossRefGoogle Scholar
Crainic, M. and Moerdijk, I.. A homology theory for étale groupoids. J. Reine Angew. Math. 521 (2000), 2546.Google Scholar
Deeley, R. J. and Yashinski, A.. The stable algebra of a Wieler solenoid: inductive limits and $K$ -theory. Ergod. Th. & Dynam. Sys. 40(10) (2020), 27342768.10.1017/etds.2019.17CrossRefGoogle Scholar
Dekimpe, K. and Petrosyan, N.. Homology of Hantzsche–Wendt groups. Discrete Groups and Geometric Structures (Contemporary Mathematics, 501). Eds. K. Dekimpe, P. Igodt and A. Valette. American Mathematical Society, Providence, RI, 2009, pp. 87102.CrossRefGoogle Scholar
Epstein, D. and Shub, M.. Expanding endomorphisms of flat manifolds. Topology 7 (1968), 139141.CrossRefGoogle Scholar
Farsi, C., Kumjian, A., Pask, D. and Sims, A.. Ample groupoids: equivalence, homology, and Matui’s HK conjecture. Münster J. Math. 12(2) (2019), 411451.Google Scholar
Gasior, A. and Szczepański, A.. Flat manifolds with holonomy group ${\mathbb{Z}}_2^k$ of diagonal type. Osaka J. Math. 51(4) (2014), 10151025.Google Scholar
Husemöller, D., Joachim, M., Jurčo, B. and Schottenloher, M.. Basic Bundle Theory and $K$ -Cohomology Invariants (Lecture Notes in Physics, 726). Springer, Berlin, 2008. With contributions by Siegfried Echterhoff, Stefan Fredenhagen and Bernhard Krötz.CrossRefGoogle Scholar
Kamishima, Y. and Masuda, M.. Cohomological rigidity of real Bott manifolds. Algebr. Geom. Topol. 9(4) (2009), 24792502.10.2140/agt.2009.9.2479CrossRefGoogle Scholar
Matthey, M.. Mapping the homology of a group to the $K$ -theory of its ${C}^{\ast }$ -algebra. Illinois J. Math. 46(3) (2002), 953977.CrossRefGoogle Scholar
Matui, H.. Étale groupoids arising from products of shifts of finite type. Adv. Math. 303 (2016), 502548.10.1016/j.aim.2016.08.023CrossRefGoogle Scholar
Ortega, E.. The homology of the Katsura-Exel-Pardo groupoid. J. Noncommut. Geom. 14(3) (2020), 913935.10.4171/JNCG/382CrossRefGoogle Scholar
Ortega, E. and Scarparo, E.. Almost finiteness and homology of certain non-free actions. Preprint, 2021, arXiv:2007.02329. Groups, Geom. Dyn. accepted.CrossRefGoogle Scholar
Proietti, V. and Yamashita, M.. Homology and K-theory of dynamical systems. I. Torsion-free ample groupoids. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.50. Published online 4 June 2021.CrossRefGoogle Scholar
Proietti, V. and Yamashita, M.. Homology and K-theory of dynamical systems. II. Smale spaces with totally disconnected transversal. Preprint, 2021, arXiv:2104.10938. J. Noncommut. Geom. accepted.Google Scholar
Putnam, I. F.. ${C}^{\ast }$ -algebras from Smale spaces. Canad. J. Math. 48(1) (1996), 175195.10.4153/CJM-1996-008-2CrossRefGoogle Scholar
Putnam, I. F.. A homology theory for Smale spaces. Mem. Amer. Math. Soc. 232(1094) (2014).Google Scholar
Ramras, D., Willett, R. and Yu, G.. A finite-dimensional approach to the strong Novikov conjecture. Algebr. Geom. Topol. 13(4) (2013), 22832316.CrossRefGoogle Scholar
Scarparo, E.. Homology of odometers. Ergod. Th. & Dynam. Sys. 40(9) (2020), 25412551.CrossRefGoogle Scholar
Shub, M.. Endomorphisms of compact differentiable manifolds. Amer. J. Math. 91 (1969), 175199.10.2307/2373276CrossRefGoogle Scholar
van Limbeek, W.. Towers of regular self-covers and linear endomorphisms of tori. Geom. Topol. 22(4) (2018), 24272464.10.2140/gt.2018.22.2427CrossRefGoogle Scholar
Yi, I.. Homology and Matui’s HK conjecture for groupoids on one-dimensional solenoids. Bull. Aust. Math. Soc. 101(1) (2020), 105117.CrossRefGoogle Scholar