Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:09:32.391Z Has data issue: false hasContentIssue false

Contributions to the geometric and ergodic theory of conservative flows

Published online by Cambridge University Press:  22 August 2012

MÁRIO BESSA
Affiliation:
Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal (email: [email protected])
JORGE ROCHA
Affiliation:
Departamento de Matemática, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal (email: [email protected])

Abstract

We prove the following dichotomy for vector fields in a $C^1$-residual subset of volume-preserving flows: for Lebesgue-almost every point, either all of its Lyapunov exponents are equal to zero or its orbit has a dominated splitting. Moreover, we prove that a volume-preserving and $C^1$-stably ergodic flow can be $C^1$-approximated by another volume-preserving flow which is non-uniformly hyperbolic.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anosov, D. V.. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov. 90 (1967), 209.Google Scholar
[2]Araújo, V. and Bessa, M.. Dominated splitting and zero volume for incompressible three-flows. Nonlinearity 21 (2008), 16371653.Google Scholar
[3]Araújo, V. and Pacifico, M. J.. Three-Dimensional Flows (Ergebnisse der Mathematik und ihrer Grenzgebiete, 53). Springer, Berlin, 2010.Google Scholar
[4]Arbieto, A. and Matheus, C.. A pasting lemma and some applications for conservative systems. Ergod. Th. & Dynam. Sys. 27(5) (2007), 13991417.Google Scholar
[5]Arnold, L.. Random Dynamical Systems. Springer, Berlin, 1998.Google Scholar
[6]Avila, A.. On the regularization of conservative maps. Acta Math. 205 (2010), 518.Google Scholar
[7]Bessa, M.. The Lyapunov exponents of zero divergence three-dimensional vector fields. Ergod. Th. & Dynam. Sys. 27(5) (2007), 14451472.Google Scholar
[8]Bessa, M.. Dynamics of generic multidimensional linear differential systems. Adv. Nonlinear Stud. 8 (2008), 191211.Google Scholar
[9]Bessa, M. and Dias, J. L.. Generic dynamics of $4$-dimensional $C^2$ Hamiltonian systems. Comm. Math. Phys. 281 (2008), 597619.Google Scholar
[10]Bessa, M. and Duarte, P.. Abundance of elliptic dynamics on conservative 3-flows. Dyn. Syst. 23(4) (2008), 409424.Google Scholar
[11]Bessa, M. and Rocha, J.. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity 20 (2007), 10071016.CrossRefGoogle Scholar
[12]Bessa, M. and Rocha, J.. On $C^1$-robust transitivity of volume-preserving flows. J. Differential Equations 245(11) (2008), 31273143.Google Scholar
[13]Bessa, M. and Rocha, J.. Denseness of ergodicity for a class of volume-preserving flows. Port. Math. 68(1) (2011), 117.Google Scholar
[14]Bochi, J.. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22 (2002), 16671696.Google Scholar
[15]Bochi, J.. $C^1$-generic symplectic diffeomorphisms: partial hyperbolicity and zero center Lyapunov exponents. J. Inst. Math. Jussieu 9(1) (2010), 4993.Google Scholar
[16]Bochi, J., Fayad, B. and Pujals, E.. A remark on conservative diffeomorphisms. C. R. Math. Acad. Sci. Paris Ser. I 342 (2006), 763766.Google Scholar
[17]Bochi, J. and Viana, M.. The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. of Math. (2) 161(3) (2005), 14231485.Google Scholar
[18]Bonatti, C., Díaz, L. J. and Viana, M.. Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences, 102). Springer, Berlin, 2005.Google Scholar
[19]Bonatti, C., Gourmelon, N. and Vivier, T.. Perturbations of the derivative along periodic orbits. Ergod. Th. & Dynam. Sys. 26(5) (2006), 13071337.CrossRefGoogle Scholar
[20]Dacorogna, B. and Moser, J.. On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré 7(1) (1990), 126.CrossRefGoogle Scholar
[21]Doering, C.. Persistently transitive vector fields on three-dimensional manifolds. Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985) (Pitman Research Notes in Mathematics Series, 160). Longman, Harlow, 1987, pp. 5989.Google Scholar
[22]Ferreira, C.. Stability properties of divergence-free vector fields. Dyn. Syst. 27(2) (2012), 223238.Google Scholar
[23]Franks, J.. Necessary conditions for the stability of diffeomorphisms. Trans. Amer. Math. Soc. 158 (1971), 301308.Google Scholar
[24]Gan, S. and Wen, L.. Nonsingular star flows satisfy Axiom A and the no-cycle condition. Invent. Math. 164(2) (2006), 279315.Google Scholar
[25]Hu, H., Pesin, Y. and Talitskaya, A.. Every compact manifold carries a hyperbolic Bernoulli flow. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 347358.Google Scholar
[26]Johnson, R., Palmer, K. and Sell, G.. Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18 (1987), 133.Google Scholar
[27]Liao, S. T.. Obstruction sets (I). Acta Math. Sin. 23 (1980), 411453 (in Chinese).Google Scholar
[28]Mañé, R.. Oseledec’s theorem from the generic viewpoint. Proceedings of the International Congress of Mathematicians (Warsaw, 1983). PWN, Warsaw, 1984, pp. 12691276.Google Scholar
[29]Mañé, R.. The Lyapunov exponents of generic area preserving diffeomorphisms. International Conference on Dynamical Systems (Montevideo, 1995) (Pitman Research Notes in Mathematics Series, 362). Longman, Harlow, 1996, pp. 110119.Google Scholar
[30]Moser, J.. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286294.Google Scholar
[31]Oseledets, V.. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar
[32]Pesin, Y.. Families of invariant manifolds that correspond to nonzero characteristic exponents. Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 13321379.Google Scholar
[33]Pugh, C. and Shub, M.. Stable ergodicity. Bull. Amer. Math. Soc. (N.S.) 41(1) (2004), 141 (with an appendix by Alexander Starkov).Google Scholar
[34]Robinson, C.. Generic properties of conservative systems. Amer. J. Math. 92 (1970), 562603.Google Scholar
[35]Rokhlin, V. A.. On the Fundamental Ideas of Measure Theory (American Mathematical Society Translations, Series 1, 10). American Mathematical Society, Providence, RI, 1962, pp. 152.Google Scholar
[36]Viana, M.. Almost all cocycles over any hyperbolic system have non-vanishing Lyapunov exponents. Ann. of Math. (2) 167 (2008), 643680.Google Scholar
[37]Zuppa, C.. Regularisation $C^{\infty }$ des champs vectoriels qui préservent l’elément de volume. Bol. Soc. Bras. Mat. 10(2) (1979), 5156.CrossRefGoogle Scholar