Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T04:17:55.164Z Has data issue: false hasContentIssue false

Continuous spectrum for a class of smooth mixing Schrödinger operators

Published online by Cambridge University Press:  02 May 2017

BASSAM FAYAD
Affiliation:
CNRS, IMJ-PRG, Institut de Mathématiques de Jussieu, UMR7586 Bâtiment Sophie Germain, 75205 Paris Cedex 13, France email [email protected]
YANHUI QU
Affiliation:
Department of Mathematical Science, Tsinghua University, Beijing 100084, PR China email [email protected]

Abstract

We give the first example of a smooth volume preserving mixing dynamical system such that the discrete Schrödinger operators on the line defined with a potential generated by this system and a Hölder sampling function have almost surely a continuous spectrum.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, A. and Forni, G.. Weak mixing for interval exchange transformations and translation flows. Ann. of Math. (2) 165(2) (2007), 637664.Google Scholar
Boshernitzan, M. and Damanik, D.. Generic continuous spectrum for ergodic Schrödinger operators. Comm. Math. Phys. 283(3) (2008), 647662.Google Scholar
Boshernitzan, M. and Damanik, D.. The repetition property for sequences on tori generated by polynomials or skew-shifts. Israel J. Math. 174 (2009), 189202.Google Scholar
Bourgain, J.. On the spectrum of lattice Schrödinger operators with deterministic potential. J. Anal. Math. 87 (2002), 3775.Google Scholar
Bourgain, J., Goldstein, M. and Schlag, W.. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys. 220(3) (2001), 583621.Google Scholar
Bourgain, J. and Schlag, W.. Anderson localization for Schrödinger operators on ℤ with strongly mixing potentials. Comm. Math. Phys. 215(1) (2000), 143175.Google Scholar
Carmona, R. and Lacroix, J.. Spectral Theory of Random Schrödinger Operators (Probability and its Applications) . Birkhäuser, Boston, MA, 1990.Google Scholar
Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B.. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry (Texts and Monographs in Physics) . Springer Study Edition. Springer, Berlin, 1987.Google Scholar
Fayad, B.. Analytic mixing reparametrizations of irrational flows. Ergod. Th. & Dynam. Sys. 22 (2002), 437468.Google Scholar
Fayad, B.. Smooth mixing diffeomorphisms and flows with singular spectra. Duke Math. J. 132(2) (2006), 371391.Google Scholar
Gordon, A.. On the point spectrum of the one-dimensional Schrödinger operator. Uspekhi Mat. Nauk 31 (1976), 257258.Google Scholar
Katok, A. B.. Interval exchange transformations and some special flows are not mixing. Israel J. Math. 35 (1980), 301310.Google Scholar
Katok, A. B.. Combinatorial Constructions in Ergodic Theory and Dynamics (University Lecture Series, 30) . American Mathematical Society, Providence, RI, 2003.Google Scholar
Kunz, H. and Souillard, B.. Sur le spectre des opérateurs aux différences finies aléatoires. Comm. Math. Phys. 78(2) (1980–1981), 201246.Google Scholar
Parry, W.. Topics in Ergodic Theory (Cambridge Tracts in Mathematics, 75) . Cambridge University Press, Cambridge, 1981.Google Scholar
Pastur, L. and Figotin, A.. Spectra of Random and Almost-periodic Operators (Grundlehren der Mathematischen Wissenschaften, 297) . Springer, Berlin, 1992.Google Scholar
Yoccoz, J.-C.. Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Petits diviseurs en dimension 1. Astérisque 231 (1995), 89242 (in French).Google Scholar