Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T01:09:09.384Z Has data issue: false hasContentIssue false

Classification of expansive attractors on surfaces

Published online by Cambridge University Press:  23 November 2010

MARCY BARGE
Affiliation:
Department of Mathematics, Montana State University, Bozeman, MT 59717, USA (email: [email protected])
BRIAN F. MARTENSEN
Affiliation:
Department of Mathematics and Statistics, Minnesota State University, Wissink 273, Mankato, MN 56001, USA (email: [email protected])

Abstract

We prove the conjecture of F. Rodriguez Hertz and J. Rodriguez Hertz [Expansive attractors on surfaces. Ergod. Th. & Dynam. Sys.26(1) (2006), 291–302; MR 2201950(2006j:37049)] that every non-trivial transitive expansive attractor of a homeomorphism of a compact surface is a derived from pseudo-Anosov attractor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Bro60]Brown, M.. Some applications of an approximation theorem for inverse limits. Proc. Amer. Math. Soc. 11 (1960), 478483; MR 0115157(22#5959).CrossRefGoogle Scholar
[BS07]Barge, M. and Swanson, R.. Rigidity in one-dimensional tiling spaces. Topology Appl. 154(17) (2007), 30953099; MR 2355514(2008k:37039).CrossRefGoogle Scholar
[Hir90]Hiraide, K.. Expansive homeomorphisms of compact surfaces are pseudo-Anosov. Osaka J. Math. 27(1) (1990), 117162; MR 1049828(91b:58184).Google Scholar
[HM08]Holton, C. and Martensen, B. F.. Embedding tiling spaces in surfaces. Fund. Math. 201(2) (2008), 99113; MR 2448414.CrossRefGoogle Scholar
[Lew89]Lewowicz, J.. Expansive homeomorphisms of surfaces. Bol. Soc. Brasil. Mat., Nova Sér. 20(1) (1989), 113133; MR 1129082(92i:58139).CrossRefGoogle Scholar
[Mat82]Mather, J. N.. Topological proofs of some purely topological consequences of Carathéodory’s theory of prime ends. Selected Studies: Physics-Acstrophysics, Mathematics, History of Science. North-Holland, Amsterdam, 1982, pp. 225255; MR 662863(84k:57004).Google Scholar
[Moo25]Moore, R. L.. Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc. 27(4) (1925), 416428.CrossRefGoogle Scholar
[Mos86]Mosher, L.. The classification of pseudo-Anosovs. Low-dimensional Topology and Kleinian Groups (Coventry/Durham, 1984) (London Mathematical Society Lecture Note Series, 112). Cambridge University Press, Cambridge, 1986, pp. 1375; MR 903858(89f:57016).Google Scholar
[RHRH06]Rodriguez Hertz, F. and Rodriguez Hertz, J.. Expansive attractors on surfaces. Ergod. Th. & Dynam. Sys. 26(1) (2006), 291302; MR 2201950(2006j:37049).CrossRefGoogle Scholar
[Sma67]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817; MR 0228014(37#3598).CrossRefGoogle Scholar
[TW98]Tymchatyn, E. D. and Walker, R. B.. Taming the Cantor fence. Topology Appl. 83(1) (1998), 4552; MR 1601638(99f:54055).CrossRefGoogle Scholar
[Wil70]Williams, R. F.. Classification of one dimensional attractors. Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV, Berkeley, CA, 1968). American Mathematical Society, Providence, RI, 1970, pp. 341361; MR 0266227(42#1134).CrossRefGoogle Scholar