Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T14:50:21.217Z Has data issue: false hasContentIssue false

Chain recurrence, growth rates and ergodic limits

Published online by Cambridge University Press:  01 October 2007

FRITZ COLONIUS
Affiliation:
Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany (email: [email protected])
ROBERTA FABBRI
Affiliation:
Dipartimento di Sistemi ed Informatica, Via S. Marta 3, 50139 Firenze, Italy
RUSSELL JOHNSON
Affiliation:
Dipartimento di Sistemi ed Informatica, Via S. Marta 3, 50139 Firenze, Italy

Abstract

Averages of functionals along trajectories are studied by evaluating the averages along chains. This yields results for the possible limits and, in particular, for ergodic limits. Applications to Lyapunov exponents and to concepts of rotation numbers of linear Hamiltonian flows and of general linear flows are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, L.. Random Dynamical Systems. Springer, Berlin, 1998.CrossRefGoogle Scholar
[2]Arnold, V. I.. On a characteristic class entering in a quantum condition. Funct. Anal. Appl. 1 (1967), 114.CrossRefGoogle Scholar
[3]Braga Barros, C. J. and San Martin, L. A. B.. Chain transitive sets for flows on flag bundles. Forum Math. 19 (2007), 1960.Google Scholar
[4]Colonius, F. and Kliemann, W.. The Morse spectrum for linear flows on vector bundles. Trans. Amer. Math. Soc. 348 (1996), 43554388.CrossRefGoogle Scholar
[5]Colonius, F. and Kliemann, W.. The Dynamics of Control. Birkhäuser, Basel, 2000.CrossRefGoogle Scholar
[6]Colonius, F. and Kliemann, W.. Morse decompositions and spectra on flag bundles. J. Dynam. Differential Equations 14 (2002), 719741.CrossRefGoogle Scholar
[7]Fabbri, R., Johnson, R. and Nunez, C.. Disconjugacy and the rotation number for linear, nonautonomous Hamiltonian systems. Ann. Mat. Pura Appl. 185 (2006), S3S21.CrossRefGoogle Scholar
[8]Gayer, T.. Control sets and their boundaries under parameter variation. J. Differential Equations 201 (2004), 177200.CrossRefGoogle Scholar
[9]Johnson, R., Palmer, K. J. and Sell, G. R.. Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18 (1987), 133.CrossRefGoogle Scholar
[10]Salamon, D. and Zehnder, E.. Flows on vector bundles and hyperbolic sets. Trans. Amer. Math. Soc. 291 (1988), 623649.CrossRefGoogle Scholar
[11]San Martin, L. A. B.. Rotation numbers in higher dimensions. Report 199, Institut für Dynamische Systeme, Universität Bremen, 1988.Google Scholar
[12]tom Dieck, T.. Topologie. De Gruyter, Berlin, 1991.Google Scholar