Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T00:43:44.246Z Has data issue: false hasContentIssue false

Bounded cohomology and totally real subspaces in complex hyperbolic geometry

Published online by Cambridge University Press:  14 September 2011

MARC BURGER
Affiliation:
Department Mathematik, ETH Zentrum, CH-8092 Zürich, Switzerland (email: [email protected], [email protected])
ALESSANDRA IOZZI
Affiliation:
Department Mathematik, ETH Zentrum, CH-8092 Zürich, Switzerland (email: [email protected], [email protected])

Abstract

We characterize representations of finitely generated discrete groups into (the connected component of) the isometry group of a complex hyperbolic space via the pullback of the bounded Kähler class.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-positive Curvature. Springer, Berlin, 1999.Google Scholar
[2]Burger, M. and Iozzi, A.. Boundary maps in bounded cohomology. Geom. Funct. Anal. 12 (2002), 281292.Google Scholar
[3]Burger, M. and Iozzi, A.. Bounded Kähler class rigidity of actions on Hermitian symmetric spaces. Ann. Sci. Éc. Norm. Supér. (4) 37(1) (2004), 77103.CrossRefGoogle Scholar
[4]Burger, M., Iozzi, A., Labourie, F. and Wienhard, A.. Maximal representations of surface groups: symplectic Anosov structures. Pure Appl. Math. Q. 1(3) (2005), 555601, special issue in memory of Armand Borel, Part 2 of three parts.Google Scholar
[5]Burger, M., Iozzi, A. and Wienhard, A.. Higher Teichmüller spaces: from SL(2,ℝ) to other Lie groups. Handbook of Teichmüller Theory, Vol. 4. European Mathematical Society, 2011.Google Scholar
[6]Burger, M., Iozzi, A. and Wienhard, A.. Surface group representations with maximal Toledo invariant. C. R. Math. Acad. Sci. Paris 336 (2003), 387390.CrossRefGoogle Scholar
[7]Burger, M., Iozzi, A. and Wienhard, A.. Hermitian symmetric spaces and Kähler rigidity. Transform. Groups 12(1) (2007), 532.Google Scholar
[8]Burger, M., Iozzi, A. and Wienhard, A.. Tight embeddings of Hermitian symmetric spaces. Geom. Funct. Anal. 19(3) (2009), 678721.Google Scholar
[9]Burger, M., Iozzi, A. and Wienhard, A.. Surface group representations with maximal Toledo invariant. Ann. of Math. (2) 172 (2010), 517566.CrossRefGoogle Scholar
[10]Burger, M. and Monod, N.. Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal. 12 (2002), 219280.CrossRefGoogle Scholar
[11]Burger, M. and Mozes, S.. CAT(−1)-spaces, divergence groups and their commensurators. J. Amer. Math. Soc. 9(1) (1996), 5793.Google Scholar
[12]Cartan, E.. Sur les groupes de la géométrie hyperspherique. Comm. Math. Helv. 4 (1932), 158171.CrossRefGoogle Scholar
[13]Dupont, J. L.. Bounds for characteristic numbers of flat bundles. Algebraic Topology, Aarhus 1978 (Proc. Sympos., Aarhus, 1978) (Lecture Notes in Mathematics, 763). Springer, Berlin, 1979, pp. 109119.Google Scholar
[14]Ghys, É.. Groupes d’homéomorphismes du cercle et cohomologie bornée. The Lefschetz Centennial Conference, Part III, (Mexico City, 1984) (Contemporary Mathematics, 58). American Mathematical Society, Providence, RI, 1987, pp. 81106.Google Scholar
[15]Goldman, W. M.. Complex Hyperbolic Geometry (Oxford Mathematical Monographs). The Clarendon Press, Oxford University Press, New York, 1999.Google Scholar
[16]Gromov, M.. Volume and bounded cohomology. Publ. Math. Inst. Hautes Études Sci. 56 (1982), 599.Google Scholar
[17]Kaimanovich, V. A.. Double ergodicity of the Poisson boundary and applications to bounded cohomology. Geom. Funct. Anal. 13(4) (2003), 852861.Google Scholar
[18]Monod, N.. Continuous Bounded Cohomology of Locally Compact Groups (Lecture Notes in Mathematics, 1758). Springer, New York, 2001.Google Scholar
[19]Mostow, G. W.. Self-adjoint groups. Ann. of Math. (2) 62 (1955), 4455.CrossRefGoogle Scholar
[20]Ramsay, A.. Boolean duals of virtual groups. J. Funct. Anal. 15 (1974), 56101.CrossRefGoogle Scholar
[21]Zimmer, R. J.. Ergodic Theory and Semisimple Groups. Birkhäuser, Boston, 1984.Google Scholar