Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:09:21.894Z Has data issue: false hasContentIssue false

Asymptotic randomization of subgroup shifts by linear cellular automata

Published online by Cambridge University Press:  03 July 2006

ALEJANDRO MAASS
Affiliation:
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile (e-mail: [email protected], [email protected])
SERVET MARTÍNEZ
Affiliation:
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile (e-mail: [email protected], [email protected])
MARCUS PIVATO
Affiliation:
Department of Mathematics, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada (e-mail: [email protected], [email protected])
REEM YASSAWI
Affiliation:
Department of Mathematics, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada (e-mail: [email protected], [email protected])

Abstract

Let ${\mathbb{M}}={\mathbb{N}}^D$ be the positive orthant of a $D$-dimensional lattice and let $({\mathcal{G}},+)$ be a finite abelian group. Let ${\mathfrak{G}} \subseteq{\mathcal{G}}^{\mathbb{M}}$ be a subgroup shift, and let $\mu$ be a Markov random field whose support is ${\mathfrak{G}}$. Let $\Phi: {\mathfrak{G}} \longrightarrow {\mathfrak{G}}$ be a linear cellular automaton. Under broad conditions on ${\mathcal{G}}$, we show that the Cesaro average $N^{-1} \sum_{n=0}^{N-1} \Phi^n (\mu)$ converges to a measure of maximal entropy for the shift action on ${\mathfrak{G}}$.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)