Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T09:44:41.475Z Has data issue: false hasContentIssue false

Aperiodic sequences and aperiodic geodesics

Published online by Cambridge University Press:  14 March 2013

VIKTOR SCHROEDER
Affiliation:
Institut für Mathematik, Mathematisch-naturwissenschaftliche Fakultät, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland email [email protected]@math.uzh.ch
STEFFEN WEIL
Affiliation:
Institut für Mathematik, Mathematisch-naturwissenschaftliche Fakultät, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland email [email protected]@math.uzh.ch

Abstract

We introduce a quantitative condition on orbits of dynamical systems, which measures their aperiodicity. We show the existence of sequences in the Bernoulli shift and geodesics on closed hyperbolic manifolds which are as aperiodic as possible with respect to this condition.

Type
Research Article
Copyright
Copyright ©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernik, V. I. and Dodson, M. M.. Metric Diophantine Approximation on Manifolds. Vol. 137. Cambridge University Press, Cambridge, 1999.Google Scholar
Boshernitzan, M. D.. Quantitative recurrence results. Invent. Math. 112 (1993), 617631.Google Scholar
Bridson, M. R. and Haeflinger, A.. Metric Spaces of Non-positive Curvature. Springer, Berlin, 1999.CrossRefGoogle Scholar
Eberlein, P.. Geometry of Nonpositively Curved Manifolds. University of Chicago Press, Chicago, 1994.Google Scholar
Einsiedler, M. and Ward, T.. Ergodic Theory: with a view towards Number Theory. Springer, London, 2011.CrossRefGoogle Scholar
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Vol. 2. Princeton University Press, Princeton, NJ, 1981.Google Scholar
Haas, A.. Geodesic cusp excursions and metric diophantine approximation. Math. Res. Lett. 16 (2009), 6785.Google Scholar
Heintze, E. and Im Hof, H. C.. Geometry of horospheres. J. Differential Geom. 12 (4) (1977), 481491.Google Scholar
Hersonsky, S. and Paulin, F.. Diophantine approximation for negatively curved manifolds. Math. Z. 241 (2002), 181226.Google Scholar
Hersonsky, S. and Paulin, F.. On the almost sure spiraling of geodesics in negatively curved manifolds. J. Differential Geom. (2) 85 (2010), 271314.Google Scholar
Morse, M. and Hedlund, G.. Unending chess, symbolic dynamics and a problem in semigroups. Duke Math. J. 11 (1944), 17.Google Scholar
Ornstein, D. and Weiss, B.. Entropy and recurrence rates for stationary random fields. IEEE Trans. Inform. Theory 48 (6) (2002), 16941697.Google Scholar
Parkkonen, J. and Paulin, F.. Prescribing the behaviour of geodesics in negative curvature. Geom. Topol. 14 (2010), 277392.Google Scholar
Parkkonen, J. and Paulin, F.. Spiraling spectra of geodesic lines in negatively curved manifolds. Math. Z. 268 (2011), 101142.Google Scholar
Patterson, S. J.. Diophantine approximation in Fuchsian groups. Philos. Trans. R. Soc. Lond. Ser. A 282 (1976), 527563.Google Scholar
Robinson, J. C.. Dimensions, Embeddings and Attractors. Vol. 186. Cambridge University Press, Cambridge, 2011.Google Scholar
Sullivan, D.. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149 (1982), 215237.Google Scholar
Velani, S. J.. Diophantine approximation and Hausdorff-dimension in Fuchsian groups. Math. Proc. Cambridge Philos. Soc. 113 (1993), 343354.Google Scholar
Ballmann, W., Gromov, M. and Schroeder, V.. Manifolds of Nonpositive Curvature. Vol. 61. Birkhäuser, Boston, 1985.Google Scholar
Walters, P.. Introduction to Ergodic Theory. Vol. 79. Springer, New York, 1981.Google Scholar