Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T13:26:49.528Z Has data issue: false hasContentIssue false

An adic dynamical system related to the Delannoy numbers

Published online by Cambridge University Press:  16 September 2011

KARL PETERSEN*
Affiliation:
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA (email: [email protected])

Abstract

We introduce an adic (Bratteli–Vershik) dynamical system based on a diagram whose path counts from the root are the Delannoy numbers. We identify the ergodic invariant measures, prove total ergodicity for each of them, and initiate the study of the dimension group and other dynamical properties.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adams, T. M. and Petersen, K. E.. Binomial-coefficient multiples of irrationals. Monatsh. Math. 125(4) (1998), 269278, doi:10.1007/BF01305342; MR 1621682(99d:28026).CrossRefGoogle Scholar
[2]Bailey, S., Keane, M., Petersen, K. and Salama, I. A.. Ergodicity of the adic transformation on the Euler graph. Math. Proc. Cambridge Philos. Soc. 141(2) (2006), 231238, doi:10.1017/S0305004106009431; MR 2265871(2007m:37010).CrossRefGoogle Scholar
[3]Frick, S. and Petersen, K.. Random permutations and unique fully supported ergodicity for the Euler adic transformation. Ann. Inst. Henri Poincaré Probab. Stat. 44(5) (2008), 876885 (English, with English and French summaries); MR 2453848(2009h:37004).CrossRefGoogle Scholar
[4]Frick, S. and Petersen, K.. Reinforced random walks and adic transformations. J. Theoret. Probab. 23(3) (2010), 920943.CrossRefGoogle Scholar
[5]Cyril, B. and Sylviane, S.. Why Delannoy numbers?. J. Statist. Plann. Inference 135(1) (2005), 4054, doi:10.1016/j.jspi.2005.02.004; MR 2202337.Google Scholar
[6]Billingsley, P.. Probability and Measure. Wiley, New York, 1995.Google Scholar
[7]Carey, N. and Clampitt, D.. Regions: a theory of tonal spaces in early medieval treatises. J. Music Theory 40(1) (1996), 113147.CrossRefGoogle Scholar
[8]Janvresse, É. and de la Rue, T.. The Pascal adic transformation is loosely Bernoulli. Ann. Inst. Henri Poincaré Probab. Stat. 40(2) (2004), 133139 (English, with English and French summaries), doi:10.1016/S0246-0203(03)00062-1; MR 2044811(2004k:37006).CrossRefGoogle Scholar
[9]Frick, S. B.. Limited scope adic transformations. Discrete Contin. Dyn. Syst. Ser. S 2(2) (2009), 269285, doi:10.3934/dcdss.2009.2.269; MR 2505638(2010h:37001).Google Scholar
[10]Lucas, E.. Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1(4) (1878), 289321 (in French), doi:10.2307/2369373; MR 1505176.CrossRefGoogle Scholar
[11]Méla, X.. A class of nonstationary adic transformations. Ann. Inst. Henri Poincaré Probab. Stat. 42(1) (2006), 103123 (English, with English and French summaries), doi:10.1016/j.anihpb.2005.02.002; MR 2196974(2006j:37003).CrossRefGoogle Scholar
[12]Méla, X. and Petersen, K.. Dynamical properties of the Pascal adic transformation. Ergod. Th. & Dynam. Sys. 25(1) (2005), 227256, doi:10.1017/S0143385704000173; MR 2122921(2005k:37012).Google Scholar
[13]Pemantle, R. and Wilson, M. C.. Asymptotics of multivariate sequences. I. Smooth points of the singular variety. J. Combin. Theory Ser. A 97(1) (2002), 129161, doi:10.1006/jcta.2001.3201; MR 1879131(2003a:05015).CrossRefGoogle Scholar
[14]Petersen, K.. Information compression and retention in dynamical processes. Dynamics and Randomness (Santiago, 2000) (Nonlinear Phenomena in Complex Systems, 7). Kluwer Academic Publishers, Dordrecht, 2002, pp. 147217; MR 1975578(2005d:37020).Google Scholar
[15]Petersen, K. and Schmidt, K.. Symmetric Gibbs measures. Trans. Amer. Math. Soc. 349(7) (1997), 27752811, doi:10.1090/S0002-9947-97-01934-X; MR 1422906(99a:28016).Google Scholar
[16]Petersen, K. and Varchenko, A.. The Euler adic dynamical system and path counts in the Euler graph. Tokyo J. Math. 33(2) (2010), 327340.CrossRefGoogle Scholar
[17]Sloane, N.. The On-Line Encyclopedia of Integer Sequences, 2010, http://oeis.org.Google Scholar
[18]Sloane, N. and Plouffe, S.. The Encyclopedia of Integer Sequences. Academic Press, San Diego, CA, 1995, p. xiv+587, with a separately available computer disk; MR 1327059(96a:11001).Google Scholar
[19]Spitzer, F.. Principles of Random Walk (The University Series in Higher Mathematics). D. Van Nostrand, Princeton, NJ, 1964, p. xi+406; MR 0171290(30#1521).Google Scholar