Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T00:23:59.006Z Has data issue: false hasContentIssue false

The algebraic-geometric AKNS potentials

Published online by Cambridge University Press:  19 September 2008

Corrado de Concini
Affiliation:
Universita di Roma II, Roma, Italy
Russell A. Johnson
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize the algebraic-geometric potentials for the Schrödinger and AKNS operators using the Weyl m-functions and the Floquet exponent for these operators. The characterization is this: among random ergodic Schrödinger operators, the alebraic-geometric potentials are those for which (i) the spectrum is a union of finitely many intervals (or bands); (ii) the Lyapounov exponent vanishes on the spectrum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

REFERENCES

[1]Ablowitz, M. & Ma, Y.. The periodic cubic Schrödinger equation. Stud. Appl. Math. 65 (1981), 113158.Google Scholar
[2]Ablowitz, M., Kaup, D., Newell, A. & Segur, H.. The inverse scattering transform: Fourier analysis for non-linear systems. Stud. in Appl. Math. 53 (1974) 249315.CrossRefGoogle Scholar
[3]Avron, J. & Simon, B.. Almost periodic Schrödinger operators II. The integrated density of states. Duke Math. J. 50 (1983), 369391.CrossRefGoogle Scholar
[4]Caratheodory, C.. Funktionentheorie II, zweite Auflage. Birkhäuser Verlag, Basel und Stuttgart, 1961.Google Scholar
[5]Coddington, E. & Levinson, M.. Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.Google Scholar
[6]Coppel, A.. Dichotomies in Stability Theory. Lecture Notes in Mathematics # 629, Springer Verlag, New York, Berlin, 1978.CrossRefGoogle Scholar
[7]Deift, P., & Simon, B.. Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension. Comm. Math. Phys. 90 (1983), 389411.Google Scholar
[8]Dubrovin, B., Matveev, V. & Novikov, S.. Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surveys 31 (1976), 59146.Google Scholar
[9]Dunford, N. & Schwarz, J.. Linear Operators, Vol. II, Interscience, New York, London, 1963.Google Scholar
[10]Duren, P.. Theory of Hp Spaces. Academic Press, New York, 1970.Google Scholar
[11]Fay, J.. On the even-order vanishing of Jacobian theta functions. Duke Math. J. 51 (1984), 109132.Google Scholar
[12]Fay, J.. Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics # 353, Springer-Verlag, New York, Berlin, 1973.CrossRefGoogle Scholar
[13]Flaschka, H. & Newell, A.. Integrable systems of non-linear evolution equations. In Lecture Notes in Physics # 38, Springer Verlag, New York, Berlin, 1974.Google Scholar
[14]Giachetti, R. & Johnson, R.. Spectral theory of two-dimensional almost periodic differential operators and its relation to certain non-linear evolution equations. Nuovo Cimento 82B (1984), 11251168.Google Scholar
[15]Giachetti, R. & Johnson, R.. The Floquet exponent for two-dimensional linear systems with bounded coefficients. To appear in J. Math. Pures et Appl.Google Scholar
[16]Hartman, P.. A characterization of the spectra of one-dimensional wave equations. Amer. J. Math. 71 (1949), 915920.CrossRefGoogle Scholar
[17]Ishii, K.. Localization of eigenstates and transport phenomena in the one-dimensional disordered system. Supp. Theor. Phys. 53 (1973), 77138.Google Scholar
[18]Johnson, R.. Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. 61 (1986), 54–78.Google Scholar
[19]Johnson, R.. Remarks on linear differential systems with measurable coefficients. In preparation.Google Scholar
[20]Johnson, R. & Moser, J.. The rotation number for almost periodic potentials. Comm. Math. Phys. 84 (1982), 403438.CrossRefGoogle Scholar
[21]Johnson, R., Palmer, K. & Sell, G.. Ergodic Theory of Linear Dynamical Systems. To appear in SIAM Journal of Applied Math.Google Scholar
[22]Kotani, S.. Lyapunov indices determine absolutely continuous spectra of stationary random onedimensional Schrödinger operators. Taniguchi Symp. SA, Katata 1982, 225247.Google Scholar
[23]McKean, H. & van Moerbeke, P.. The spectrum of Hill's equation. Invent. Math. 30 (1975), 217274.Google Scholar
[24]Moser, J.. Integrable Hamiltonian Systems and Spectral Theory. Lezioni Fermiane, Pisa, 1981.Google Scholar
[25]Nemytskii, V. & Stepanov, V.. Qualitative Theory of Ordinary Differential Equations. Princeton Univ. Press, Princeton, N.J., 1960.Google Scholar
[26]Novikov, S.. The periodic Korteweg-de Vries problem. Func. Anal. and Appl. 8 (1974), 5466.Google Scholar
[27]Oseledec, V.. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar
[28]Palmer, K.. Exponential dichotomies and transversal homoclinic points. J. Diff. Eqns. 55 (1984), 225256.Google Scholar
[29]Pastur, L.. Spectral properties of disordered systems in the one-body approximation. Comm. Math. Phys. 75 (1980), 179196.CrossRefGoogle Scholar
[30]Previato, E.. Hyperelliptic generalized Jacobians and the nonlinear Schrödinger equation. Ph.D. thesis, Harvard University, 1984.Google Scholar
[31]Sacker, R. & Sell, G.. Dichotomies and invariant splittings for linear differential systems, I. J. Diff. Equations 15 (1974), 429458.CrossRefGoogle Scholar
[32]Sacker, R. & Sell, G.. A spectral theory for linear differential systems. J. Diff. Equations 27 (1978), 320358.Google Scholar
[33]Selgrade, J.. Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc. 203 (1975), 359390.Google Scholar
[34]Weyl, H.. Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehorigen Entwicklungen willkürlicher Functionen. Math. Annalen 68 (1910), 220269.Google Scholar
[35]Zakharov, V. & Shabat, A.. A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem. Func. Anal. and Appl. 8 (1974), 226235.CrossRefGoogle Scholar