Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:26:55.815Z Has data issue: false hasContentIssue false

Algebraic proof of the non-integrability of Hill's problem

Published online by Cambridge University Press:  08 June 2005

JUAN J. MORALES-RUIZ
Affiliation:
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Pau Gargallo, 5, 08028 Barcelona, Spain (e-mail: [email protected])
CARLES SIMÓ
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08007 Barcelona, Spain (e-mail: [email protected], [email protected])
SERGI SIMON
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08007 Barcelona, Spain (e-mail: [email protected], [email protected])

Abstract

Hill's lunar problem appears in celestial mechanics as a limit of the restricted three-body problem. It is parameter-free and thus globally far from any simple well-known problem, and has shed strong numerical evidence of its lack of integrability in the past. An algebraic proof of meromorphic non-integrability is presented here. Beyond the result itself, the paper can also be considered as an example of the application of differential Galois and Morales–Ramis theories to a significant problem.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)