Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:46:48.113Z Has data issue: false hasContentIssue false

Alexandrov-embedded closed magnetic geodesics on S2

Published online by Cambridge University Press:  13 June 2011

MATTHIAS SCHNEIDER*
Affiliation:
Ruprecht-Karls-Universität, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany (email: [email protected])

Abstract

We prove the existence of two Alexandrov-embedded closed magnetic geodesics on any two-dimensional sphere with non-negative Gauß curvature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, V. I.. The first steps of symplectic topology. Uspekhi Mat. Nauk 41(6(252)) (1986), 318, 229.Google Scholar
[2]Arnold, V. I.. Arnold’s Problems. Springer, Berlin, 2004, Translated and revised edition of the 2000 Russian original, with a preface by V. Philippov, A. Yakivchik and M. Peters.Google Scholar
[3]Contreras, G., Macarini, L. and Paternain, G. P.. Periodic orbits for exact magnetic flows on surfaces. Int. Math. Res. Not. (8) (2004), 361387.CrossRefGoogle Scholar
[4]Ginzburg, V. L.. New generalizations of Poincaré’s geometric theorem. Funktsional. Anal. i Prilozhen. 21(2) (1987), 1622, 96.CrossRefGoogle Scholar
[5]Ginzburg, V. L.. On closed trajectories of a charge in a magnetic field. An application of symplectic geometry. Contact and Symplectic Geometry (Cambridge, 1994) (Publications of the Newton Institute, 8). Cambridge University Press, Cambridge, 1996, pp. 131148.Google Scholar
[6]Ginzburg, V. L.. On the existence and non-existence of closed trajectories for some Hamiltonian flows. Math. Z. 223(3) (1996), 397409.CrossRefGoogle Scholar
[7]Katok, A. B.. Ergodic perturbations of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 539576.Google Scholar
[8]Novikov, S. P.. The Hamiltonian formalism and a many-valued analogue of Morse theory. Uspekhi Mat. Nauk 37(5(227)) (1982), 349 248.Google Scholar
[9]Novikov, S. P. and Taimanov, I. A.. Periodic extremals of multivalued or not everywhere positive functionals. Dokl. Akad. Nauk SSSR 274(1) (1984), 2628.Google Scholar
[10]Osserman, R.. The isoperimetric inequality. Bull. Amer. Math. Soc. 84(6) (1978), 11821238.CrossRefGoogle Scholar
[11]Robadey, A.. Autour des géodésiques fermées simples sur la sphère. Master Thesis, Université Paris VII, 2001.Google Scholar
[12]Rosenberg, H. and Smith, G.. Degree theory of immersed hypersurfaces. Preprint, 2010, arXiv:1010.1879 [math.DG].Google Scholar
[13]Schlenk, F.. Applications of Hofer’s geometry to Hamiltonian dynamics. Comment. Math. Helv. 81(1) (2006), 105121.CrossRefGoogle Scholar
[14]Schneider, M.. Closed magnetic geodesics on S2. J. Differential Geom. (2011), Preprint, arXiv:0808.4038 [math.DG], to appear.CrossRefGoogle Scholar
[15]Taimanov, I. A.. Non-self-intersecting closed extremals of multivalued or not-everywhere-positive functionals. Izv. Akad. Nauk SSSR Ser. Mat. 55(2) (1991), 367383.Google Scholar
[16]Taimanov, I. A.. Closed extremals on two-dimensional manifolds. Uspekhi Mat. Nauk 47(2(284)) (1992), 143185, 223.Google Scholar
[17]Tromba, A. J.. A general approach to Morse theory. J. Differential Geom. 12(1) (1977), 4785.CrossRefGoogle Scholar
[18]Ziller, W.. Geometry of the Katok examples. Ergod. Th. & Dynam. Sys. 3(1) (1983), 135157.CrossRefGoogle Scholar