No CrossRef data available.
Article contents
Absorbing cantor sets and trapping structures
Published online by Cambridge University Press: 19 September 2008
Abstract
It it shown that a minimal attractor for a continuous, lebesgue non-singular transformation on an interval with no wandering intervals is either a periodic orbit, a finite collection of intervals, a simply attracting cantor set, or an absorbing cantor set.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
REFERENCES
[1]Blokh, A. & Lyubich, M.. Non-existence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. Ergod. Th. & Dynam. Sys. 9 (1989), 751–758.CrossRefGoogle Scholar
[2]Guckenheimer, J.. Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70 (1979), 133–160.CrossRefGoogle Scholar
[3]Guckenheimer, J. & Johnson, S.. Distortion of s-unimodal maps. Ann. Math. 132 (1990), 71–130.CrossRefGoogle Scholar
[4]Milnor, J.. On the concept of attractor. Commun. Math. Phys. 99 (1985), 177–195.CrossRefGoogle Scholar
[5]Martens, M., de Melo, W. & van Strien, S.. Julia-Fatou-Sullivan theory for one dimensional dynamics. Preprint (1988).Google Scholar