Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T00:31:07.601Z Has data issue: false hasContentIssue false

Towards a semi-local study of parabolic invariant curves for fibered holomorphic maps

Published online by Cambridge University Press:  14 October 2011

MARIO PONCE*
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile (email: [email protected])

Abstract

We introduce the study of the local dynamics around a parabolic indifferent invariant curve for fibered holomorphic maps. As in the classical non-fibered case, we show that petals are the main ingredient. Nevertheless, one expects that the properties of the base rotation number should play an important role in the arrangement of the petals. We exhibit examples where the existence and the number of petals depend not just on the complex coordinate of the map, but on the base rotation number. Furthermore, under additional hypotheses on the arithmetic and smoothness of the map, we present a theorem that allows a characterization of the local dynamics around a parabolic invariant curve.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Atkinson, G.. A class of transitive cylinder transformations. J. Lond. Math. Soc. (2) 17(2) (1978), 263270.CrossRefGoogle Scholar
[2]Besicovitch, A. S.. A problem on topological transformations of the plane. II. Proc. Cambridge Philos. Soc. 47 (1951), 3845.CrossRefGoogle Scholar
[3]Carleson, L. and Gamelin, T. W.. Complex Dynamics (Universitext: Tracts in Mathematics). Springer, New York, 1993.Google Scholar
[4]DeMarco, L. and Hruska, S. L.. Axiom A polynomial skew products of and their postcritical sets. Ergod. Th. & Dynam. Sys. 28(6) (2008), 17491779.CrossRefGoogle Scholar
[5]Fatou, P.. Sur les équations fonctionnelles. Bull. Soc. Math. France 47 (1919), 161271.Google Scholar
[6]Fraczek, K. and Lemanczyk, M.. On Hausdorff dimension of the set of closed orbits for a cylindrical transformation, 2010, arxiv:1006.4498v1.Google Scholar
[7]Gottschalk, W. H. and Hedlund, G. A.. Topological Dynamics (American Mathematical Society Colloquium Publications, 36). American Mathematical Society, Providence, RI, 1955.Google Scholar
[8]Herman, M.-R.. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. Inst. Hautes Études Sci. 49 (1979), 5233.Google Scholar
[9]Herman, M.-R.. Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1 (Astérisque, 103). Société Mathématique de France, Paris, 1983, with an appendix by Albert Fathi, with an English summary.Google Scholar
[10]Hruska, S. L. and Roeder, R. K. W.. Topology of Fatou components for endomorphisms of : linking with the Green’s current. Fund. Math. 210(1) (2010), 7398.Google Scholar
[11]Jonsson, M.. Dynamics of polynomial skew products on C2. Math. Ann. 314(3) (1999), 403447.Google Scholar
[12]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995, with a supplementary chapter by Katok and Leonardo Mendoza.Google Scholar
[13]Le Roux, F.. A topological characterization of holomorphic parabolic germs in the plane. Fund. Math. 198(1) (2008), 7794.Google Scholar
[14]Leau, L.. Étude sur les équations fonctionnelles à une ou à plusieurs variables. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 11(2) (1897), E1E24.Google Scholar
[15]Milnor, J.. Dynamics in One Complex Variable, 3rd edn(Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[16]Ponce, M.. Local dynamics for fibred holomorphic transformations. Nonlinearity 20(12) (2007), 29392955.Google Scholar
[17]Sester, O.. Hyperbolicité des polynômes fibrés. Bull. Soc. Math. France 127(3) (1999), 393428.Google Scholar
[18]Siegel, C. L.. Iteration of analytic functions. Ann. of Math. (2) 43 (1942), 607612.Google Scholar
[19]Sumi, H.. Skew product maps related to finitely generated rational semigroups. Nonlinearity 13(4) (2000), 9951019.Google Scholar
[20]Viana, M.. Multidimensional non-hyperbolic attractors. Publ. Math. Inst. Hautes Études Sci. 85 (1997), 6396.CrossRefGoogle Scholar
[21]Yoccoz, J.-C.. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 231 (1995), 388.Google Scholar