Published online by Cambridge University Press: 10 June 2011
In this paper we investigate the ideal structure of the C*-algebra of a locally injective surjection introduced by the second-named author. Our main result is that a simple quotient of the C*-algebra of a locally injective surjection on a compact metric space of finite covering dimension is either a full matrix algebra, a crossed product of a minimal homeomorphism of a compact metric space of finite covering dimension, or it is purely infinite and hence covered by the classification result of Kirchberg and Phillips. It follows in particular that if the C*-algebra of a locally injective surjection on a compact metric space of finite covering dimension is simple, then it is automatically purely infinite, unless the map in question is a homeomorphism. A corollary of this result is that if the C*-algebra of a one-sided subshift is simple, then it is also purely infinite.