Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T20:25:47.315Z Has data issue: false hasContentIssue false

Strong renewal theorems and Lyapunov spectra for α-Farey and α-Lüroth systems

Published online by Cambridge University Press:  02 September 2011

MARC KESSEBÖHMER
Affiliation:
Fachbereich 3 – Mathematik und Informatik, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany (email: [email protected], [email protected])
SARA MUNDAY
Affiliation:
Mathematical Institute, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, Scotland (email: [email protected])
BERND O. STRATMANN
Affiliation:
Fachbereich 3 – Mathematik und Informatik, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany (email: [email protected], [email protected])

Abstract

In this paper, we introduce and study the α-Farey map and its associated jump transformation, the α-Lüroth map, for an arbitrary countable partition α of the unit interval with atoms which accumulate only at the origin. These maps represent linearized generalizations of the Farey map and the Gauss map from elementary number theory. First, a thorough analysis of some of their topological and ergodic theoretical properties is given, including establishing exactness for both types of these maps. The first main result then is to establish weak and strong renewal laws for what we have called α-sum-level sets for the α-Lüroth map. Similar results have previously been obtained for the Farey map and the Gauss map by using infinite ergodic theory. In this respect, a side product of the paper is to allow for greater transparency of some of the core ideas of infinite ergodic theory. The second remaining result is to obtain a complete description of the Lyapunov spectra of the α-Farey map and the α-Lüroth map in terms of the thermodynamical formalism. We show how to derive these spectra and then give various examples which demonstrate the diversity of their behaviours in dependence on the chosen partition α.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
[2]Aaronson, J., Denker, M. and Urbański, M.. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. 33(2) (1993), 495548.CrossRefGoogle Scholar
[3]Barrionuevo, J., Burton, R. M., Dajani, K. and Kraaikamp, C.. Ergodic properties of generalized Lüroth series. Acta Arith. LXXIV(4) (1996), 311327.CrossRefGoogle Scholar
[4]Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular Variation (Encyclopedia of Mathematics and its Applications, 27). Cambridge University Press, Cambridge, 1989.Google Scholar
[5]Dajani, K. and Kraaikamp, C.. On approximation by Lüroth series. J. Théor. Nombres Bordeaux 8 (1996), 331346.CrossRefGoogle Scholar
[6]Dajani, K. and Kraaikamp, C.. Ergodic Theory and Numbers (Carus Mathematical Monographs, 29). Math. Assoc. of America, Washington, DC, 2002.CrossRefGoogle Scholar
[7]Doob, J. L.. Stochastic Processes. Wiley, New York, 1953.Google Scholar
[8]Erdős, P., Pollard, H. and Feller, W.. A property of power series with positive coefficients. Bull. Amer. Math. Soc. 55 (1949), 201204.CrossRefGoogle Scholar
[9]Erickson, K. B.. Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 151 (1970), 263291.CrossRefGoogle Scholar
[10]Garsia, A. and Lamperti, J.. A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37 (1963), 221234.CrossRefGoogle Scholar
[11]Gelfert, K. and Rams, M.. The Lyapunov spectrum of some parabolic systems. Ergod. Th. & Dynam. Sys. 29(3) (2009), 919940.CrossRefGoogle Scholar
[12]Good, I. J.. The fractional dimensional theory of continued fractions. Proc. Cambridge Philos. Soc. 37 (1941), 199228.CrossRefGoogle Scholar
[13]Hopf, E.. Ergodentheorie (Ergebnisse der Mathematik, 5). Springer, Berlin, 1937.CrossRefGoogle Scholar
[14]Jaerisch, J. and Kesseböhmer, M.. Regularity of multifractal spectra of conformal iterated function systems. Trans. Amer. Math. Soc. 363(1) (2011), 313330.CrossRefGoogle Scholar
[15]Kalpazidou, S., Knopfmacher, A. and Knopfmacher, J.. Metric properties of alternating Lüroth series. Port. Math. 48 (1991), 319325.Google Scholar
[16]Kesseböhmer, M. and Stratmann, B. O.. A multifractal analysis for Stern–Brocot intervals, continued fractions and Diophantine growth rates. J. Reine Angew. Math. 605 (2007), 133163.Google Scholar
[17]Kesseböhmer, M. and Stratmann, B. O.. Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128 (2008), 26632686.CrossRefGoogle Scholar
[18]Kesseböhmer, M. and Stratmann, B. O.. On the Lebesgue measure of sum-level sets for continued fractions. Discrete Contin. Dyn. Syst. to appear.Google Scholar
[19]Kolmogorov, A. N.. Foundations of the Theory of Probability. Chelsea, New York, 1956.Google Scholar
[20]Krengel, U.. Ergodic Theorems. De Gruyter, Berlin, 1985.CrossRefGoogle Scholar
[21]Lin, M.. Mixing for Markov operators. Z. Wahrsch. Verw. Gebiete 19 (1971), 231243.CrossRefGoogle Scholar
[22]Lüroth, J.. Über eine eindeutige Entwicklung von Zahlen in eine unendliche Reihe. Math. Ann. 21 (1883), 411423.CrossRefGoogle Scholar
[23]Minkowski, H.. Geometrie der Zahlen (Gesammelte Abhandlungen, 2). Reprinted by Chelsea, New York, 1967, pp. 4352.Google Scholar
[24]Munday, S.. A note on Diophantine-type fractals for α-Lüroth systems. Integers to appear, Preprint, 2010, arXiv:1011.5391.Google Scholar
[25]Salem, R.. On some singular monotonic functions which are strictly increasing. Trans. Amer. Math. Soc. 53(3) (1943), 427439.CrossRefGoogle Scholar
[26]Sarig, O.. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217(3) (2001), 555577.CrossRefGoogle Scholar
[27]Wang, X.-J.. Statistical physics of temporal intermittency. Phys. Rev. A 40(11) (1989), 66476661.CrossRefGoogle ScholarPubMed