Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:57:08.992Z Has data issue: false hasContentIssue false

Some results of uniform distribution in the multidimensional torus

Published online by Cambridge University Press:  01 April 2000

BERNARD HOST
Affiliation:
Équipe d'Analyse et de mathématiques appliquées, Université de Marne la Vallée, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallée Cedex 2, France (e-mail: [email protected])

Abstract

This paper contains a generalization to the $d$-torus $\mathbb{T}^d$ of earlier results (B. Host. Nombres normaux, entropie, translations. Israel J. Math. 91 (1995), 419–428). Given a probability measure $\mu$ on and an endomorphism $T$ of $\mathbb{T}^d$, we explore the relations between three properties: the uniform distribution of the sequence $(T^n\mathbf{t})$ for $\mu$-almost all $\mathbf{t}$; the behaviour of $\mu$ relative to the translations by some rational subgroups of $\mathbb{T}^d$; and the entropy of $\mu$ for another endomorphism $S$ of $\mathbb{T}^d$.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)