Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T00:52:45.676Z Has data issue: false hasContentIssue false

Rotation and periodicity in plane separating continua

Published online by Cambridge University Press:  19 September 2008

Marcy Barge
Affiliation:
Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717, USA
Richard M. Gillette
Affiliation:
Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717, USA

Abstract

We prove that if F is an orientation-preserving homeomorphism of the plane that leaves invariant a continuum Λ which irreducibly separates the plane into exactly two domains, then the convex hull of the rotation set of F restricted to Λ is a closed interval and each reduced rational in this interval is the rotation number of a periodic orbit in Λ. We also show that the interior and exterior rotation numbers of F associated with Λ are contained in the convex hull of the rotation set of F restricted to Λ and that if this set is nondegenerate then Λ is an indecomposable continuum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AY]Alligood, K. & Yorke, J.. Accessible saddles on fractal basin boundaries. Ergod. Th. & Dynam. Sys. (to appear).Google Scholar
[B]Birkhoff, G. D.. Sur quelques courbes fermés remarquables. Bull. Soc. Math. France 60 (1932), 126.Google Scholar
[BG]Barge, M. & Gillette, R.. Indecomposability and dynamics of invariant plane separating continua. Contemp. Math. To appear.Google Scholar
[BS]Barge, M. & Swanson, R.. Rotation shadowing properties of circle and annulus maps. Ergod. Th. & Dynam. Sys. 8 (1988), 509521.CrossRefGoogle Scholar
[C]Charpentier, M.. Sur quelques propriétés des courbes de M. Birkhoff. Bull. Soc. Math. France 62 (1934), 193224.Google Scholar
[CL1]Cartwright, M. L. & Littlewood, J. E.. On non-linear differential equations of the second order: I. The equation , k large. J. London Math. Soc. 20 (1945), 180189.CrossRefGoogle Scholar
[CL2]Cartwright, M. L. & Littlewood, J. E.. Some fixed point theorems. Ann. Math. 54 (1951), 137.CrossRefGoogle Scholar
[CoL]Collingwood, E. F. & Lohwater, A. J.. Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, No. 56. Cambridge University Press, Cambridge, 1966.CrossRefGoogle Scholar
[F]Franks, J.. Recurrence and fixed points of surface homeomorphisms. Ergod. Th. & Dynam. Sys. 8 (1988), 99107.Google Scholar
[GH]Guckenheimer, J. & Holmes, P.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Math. Sciences 42, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1982.Google Scholar
[HW]Hurewicz, W. & Wallman, H.. Dimension Theory. Princeton University Press, Princeton, New Jersey, 1948.Google Scholar
[HY]Hocking, J. & Young, G.. Topology. Addison-Wesley, Reading, Massachusetts, 1961.Google Scholar
[K]Kuratowski, K.. Topology, vol. II. Academic Press, New York and London, 1968.Google Scholar
[L]Levi, M.. Qualitative analysis of the periodically forced relaxation oscillations. Mem. Amer. Math. Soc. 24 (1981), 1147.Google Scholar
[Le]Levinson, N.. A second order differential equation with singular solutions. Ann. Math. 50 (1949), 127153.CrossRefGoogle Scholar
[LeC]LeCalvez, P.. Propriétés des attracteurs de Birkhoff. Ergod. Th. & Dynam. Sys. 8 (1988), 241310.CrossRefGoogle Scholar
[N]Newman, M. H. A.. Topology of Plane Sets. Cambridge University Press, second ed., 1954.Google Scholar
[O]Oxtoby, J.. Diameters of arcs and the gerrymandering problem. Amer. Math. Monthly 84 (1977), 155162.CrossRefGoogle Scholar