Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T03:16:49.653Z Has data issue: false hasContentIssue false

Rational weak mixing in infinite measure spaces

Published online by Cambridge University Press:  31 August 2012

JON AARONSON*
Affiliation:
School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel (email: [email protected])

Abstract

Rational weak mixing is a measure theoretic version of Krickeberg’s strong ratio mixing property for infinite measure preserving transformations. It requires ‘density’ ratio convergence for every pair of measurable sets in a dense hereditary ring. Rational weak mixing implies weak rational ergodicity and (spectral) weak mixing. It is enjoyed for example by Markov shifts with Orey’s strong ratio limit property. The power, subsequence version of the property is generic.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A]Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
[A1]Aaronson, J.. Rational ergodicity and a metric invariant for Markov shifts. Israel J. Math. 27(2) (1977), 93123.Google Scholar
[A2]Aaronson, J.. The asymptotic distributional behaviour of transformations preserving infinite measures. J. Anal. Math. 39 (1981), 203234.Google Scholar
[AD]Aaronson, J. and Denker, M.. Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1(2) (2001), 193237.Google Scholar
[ADSZ]Aaronson, J., Denker, M., Sarig, O. and Zweimüller, R.. Aperiodicity of cocycles and conditional local limit theorems. Stoch. Dyn. 4(1) (2004), 3162.CrossRefGoogle Scholar
[ALV]Aaronson, J., Lemańczyk, M. and Volný, D.. A cut salad of cocycles. Fund. Math. 157 (1998), 99119.Google Scholar
[ALW]Aaronson, J., Lin, M. and Weiss, B.. Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products. A Collection of Invited Papers on Ergodic Theory. Israel J. Math. 33(3–4) (1979), 198–224 (1980).Google Scholar
[AS]Ageev, O. N. and Silva, C. E.. Genericity of rigid and multiply recurrent infinite measure-preserving and nonsingular transformations. Proceedings of the 16th Summer Conference on General Topology and its Applications (New York, NY, 2001). Topology Proc. 26(2) (2002), 357–365.Google Scholar
[BF]Blackwell, D. and Freedman, D.. The tail $\sigma $-field of a Markov chain and a theorem of Orey. Ann. Math. Stat. 35 (1964), 12911295.Google Scholar
[BGT]Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular Variation. Cambridge University Press, Cambridge, 1989.Google Scholar
[Ch]Chung, K. L.. Markov Chains with Stationary Transition Probabilities (Grundlehren der Mathematischen Wissenshaften, 104). Springer, Berlin, 1960.Google Scholar
[CP]Choksi, J. R. and Prasad, V. S.. Approximation and Baire category theorems in ergodic theory. Measure Theory and its Applications (Proceedings of Conference, Sherbrooke, 1982) (Lecture Notes in Mathematics, 1033). Springer, Berlin, 1983, pp. 94113.Google Scholar
[DK]Darling, D. A. and Kac, M.. On occupation times for Markoff processes. Trans. Amer. Math. Soc. 84 (1957), 444458.Google Scholar
[E]Erickson, K. B.. Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 151 (1970), 263291.Google Scholar
[FL]Foguel, S. R. and Lin, M.. Some ratio limit theorems for Markov operators. Z. Wahrscheinlichkeitstheor. Verw. Geb. 23 (1972), 5566.Google Scholar
[Fre]Frenk, J. B. G.. The behavior of the renewal sequence in case the tail of the waiting time distribution is regularly varying with index $-$1. Adv. in Appl. Probab. 14 (1982), 870884.Google Scholar
[Fri]Friedman, N.. Mixing transformations in an infinite measure space. Studies in Probability and Ergodic Theory (Advances in Mathematics: Supplementary Studies, 2). Academic Press, NY, New York–London, 1978, pp. 167184.Google Scholar
[GL]Garsia, A. and Lamperti, J.. A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37 (1963), 221234.Google Scholar
[HK]Hajian, A. and Kakutani, S.. Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc. 110 (1964), 136151.CrossRefGoogle Scholar
[HP]Hanson, D. L. and Pledger, G.. On the mean ergodic theorem for weighted averages. Z. Wahrscheinlichkeitstheor. Verw. Geb. 13 (1969), 141149.CrossRefGoogle Scholar
[HR]Harris, T. E. and Robbins, H.. Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. Natl. Acad. Sci. USA 39 (1953), 860864.Google Scholar
[H]Hopf, E.. Ergodentheorie (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 5). Springer, Berlin, 1937.Google Scholar
[KM]Karlin, S. and McGregor, J.. Random walks. Illinois J. Math. 3 (1959), 6681.Google Scholar
[Kre]Krengel, U.. Ergodic Theorems. Walter de Gruyter, Berlin, 1985.Google Scholar
[Kri1]Krickeberg, K.. Strong mixing properties of Markov chains with infinite invariant measure. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1965/66), Vol. II, Part 2. University of California Press, Berkeley, CA, 1967, pp. 431446.Google Scholar
[Kri2]Krickeberg, K.. Mischende Transformationen auf Mannigfaltigkeiten unendlichen Masses. Z. Wahrscheinlichkeitstheor. Verw. Geb. 7 (1967), 235247.Google Scholar
[L]Lenci, M.. On infinite-volume mixing. Comm. Math. Phys. 298(2) (2010), 485514.Google Scholar
[MT]Melbourne, I. and Terhesiu, D.. Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189 (2012), 61110.Google Scholar
[O]Orey, S.. Strong ratio limit property. Bull. Amer. Math. Soc. 67 (1961), 571574.Google Scholar
[Pap]Papangelou, F.. Strong ratio limits, $R$-recurrence and mixing properties of discrete parameter Markov processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 8 (1967), 259297.Google Scholar
[Par]Parry, W.. Ergodic and spectral analysis of certain infinite measure preserving transformations. Proc. Amer. Math. Soc. 16 (1965), 960966.Google Scholar
[S]Sachdeva, U.. On category of mixing in infnite measure spaces. Math. Syst. Theory 5 (1971), 319330.Google Scholar
[T]Thaler, M.. The asymptotics of the Perron–Frobenius operator of a class of interval maps preserving infinite measures. Studia Math. 143(2) (2000), 103119.Google Scholar